Water resources management in Guatemala

Last updated
Water resources management in Guatemala [1]
Withdrawals by sector 2000
  • Domestic: 6.5%
  • Agriculture: 80%
  • Industry: 13.4%
Renewable water resources111 km3
Surface water produced internally102.8 km3
Groundwater recharge 33.7 km3
Overlap shared by surface water and groundwater25.2 km3
Renewable water resources per capita7,979 m3/year
Wetland designated as Ramsar sites6,285 km2
Hydropower generation47%

Guatemala faces substantial resource and institutional challenges in successfully managing its national water resources. Deforestation is increasing as the global demand for timber exerts pressure on the forests of Guatemala. Soil erosion, runoff, and sedimentation of surface water is a result of deforestation from development of urban centers, agriculture needs, and conflicting land and water use planning. Sectors within industry are also growing and the prevalence of untreated effluents entering waterways and aquifers has grown alongside.

Contents

Untreated wastewater contaminates water resources as well where treatment facilities are inadequate. Populations are unequally distributed and this creates challenges of conveyance. In a mountainous country this can easily be mitigated with gravity fed systems. Where water pumps are needed, water delivery is much more expensive and can be a barrier to consistent access.

Guatemala is also facing institutional challenges, mostly due to a lack of coordination among the different agencies responsible for water resources management where duplication of efforts and responsibility gaps exist. SEGEPLAN and the Secretaria de Recursos Hidraulicos de la Presidencia are other ministry level institutions that highlight possible overlaps in duties as both are within the office of the president and have water resources management responsibilities.

Guatemala has ample amounts of rainwater, surface and groundwater. While surface water is abundant, they are seasonal and often polluted. Groundwater from wells and springs is important to the national supply resource meeting demands for potable water for public and domestic needs. Groundwater is also used for the agricultural and industrial sectors as well. Hydroelectricity output is the key component (92%) of Guatemala's electricity generation and is highlighted by the Chixoy hydroelectric project. The National Institute of Electricity (INDE) (El Instituto Nacional de Electrificacion) oversees and implements hydroelectric projects in Guatemala.

Water resources management challenges

Management of water resources in Guatemala is shared by several government agencies and institutions. Most of these agencies conduct their work with little or no coordination with other agencies, which creates duplication of work and inefficient use of resources. [2] In addition, there is a need for the enactment of watershed management plans aimed at integrating different water uses, controlling deforestation and water quality.

Water resources in Guatemala are also stressed by domestic users. Generally, populations are larger in regions where water availability is low due to altitude or rainfall deficit, and the opposite is true in regions where water resources are abundant. Guatemala City is a prime example. The city is home to more than 20% (3.2 million) of the countries population. However, the valley where Guatemala City is located is in a south central region of the country and spans the Continental Divide. The location of Guatemala city near the continental divide is at the origin of all nearby rivers where flows are minimal. This equates to small quantities of surface water and inadequate groundwater sources that cannot fully supplement the needs of the city. [2]

Water resource base

The hydrographic system is divided into three primary drainage basins. First, the Pacific Ocean drainage basin covers 22% of the country and counts 18 watersheds. Some of the rivers in this zone transport volcanic sediments to be deposited along the coast and contributes to coastal flooding due to reduced depths of tidal marshes. Annual surface runoff in this basin is 25.5 km3. The Caribbean Sea drainage basin covers 31% of the country and has 10 watersheds. Average annual surface runoff in this basin is calculated at 31.9 km3. The Gulf of Mexico basin covers 47% of Guatemala and 10 watersheds. The rivers in this basin have the largest flows in the country and drain towards Mexico. Surface runoff in this basin is 43.3 km3. [3]

Guatemala, as its (Mayan) name indicates, is a land of forests. The country is also mountainous and rainfall is influenced by Pacific and Atlantic Ocean weather patterns such as El Niño, La Niña, and hurricanes. The Caribbean Sea influences rainfall patterns in Guatemala in the same way. Average rainfall varies from 700 mm per year in the eastern regions of the country to around 1,000 mm in the central regions, and 5,000 mm of rainfall in the northeastern regions. The current population in the mountainous northwestern zone numbers around five million inhabitants and this region has high levels of rainfall (up to 4,000 mm per year) and steep slopes that are susceptible to erosion. This region is an area with great water potential, but also subject to irreversible damage from soil loss and the alteration of the water cycle. [4]

Surface water and Groundwater resources

Surface water covers about 1,000 km2 of the 108,900 km2 of land area across Guatemala. Although surface water resources are abundant, they are unequally distributed, highly seasonal, and generally polluted. [2] Fresh ground water from wells and springs is an essential resource and a major source of potable water and used for agricultural, industrial, public, and domestic demand. Ground water is generally plentiful from sedimentary aquifers throughout the plains, valleys, and lowlands of the country. [2]

The two most substantial aquifers are the Pacific Coastal Plain alluvium and the karstic and fractured limestone that extend beneath the Sierra de los Cuchumatanes, Sierra de Chama, and Peten Lowlands. Other more limited aquifers are important for small-scale local demands. The mountains and hills of Guatemala contain many other types of aquifers, including volcanic pyroclastic and lava deposits, low permeability sediments, igneous, and metamorphic aquifers. Alluvial plains, valleys and lowlands make up about 50% of the countries territory and contain about 70% of the available ground water reserves. [2]

Major lakes and reservoirs

Lake Amatitlan. Pacaya-09.JPG
Lake Amatitlán.

Guatemala has 23 major lakes and another 119 that all encompass an area of 950 km2. Storage capacity for up to half of the lakes in Guatemala is used solely for hydroelectric energy generation and the volume of water is on the order of 524 million m3. The Chixoy Hydroelectric Dam is the largest of the hydroelectric reservoirs with an effective capacity of 275 MW which supplies 15% of the countries electricity demand. [3]

An important lake to highlight located near Guatemala City is the once pristine Lake Amatitlán which is now long degraded from years of domestic and industrial dumping, and deforestation. Each year large quantities of untreated sewage, industrial effluent and around 500,000 tons of sediment are carried into Lake Amatitlán through the lake's primary inflow source, the Villalobos River, causing high levels of water pollution and an accelerated rate of eutrophication and siltation. [5]

The lake is drained by the Michatoya River which is a tributary of the María Linda River and the town of Amatitlán is located at the head of the Michatoya river. A dam with a railway on top was constructed at the narrowest point, thus effectively dividing the lake into two water bodies with different physical, chemical and biological characteristics. The lake is used as a water source for navigation and transportation, sightseeing and tourism, recreation, and fisheries. [6]

The Lake Atitlán basin is a closed watershed or endorheic lake located in the volcanic highlands of Guatemala. This lake is the deepest lake in Central America with estimated depths of at least 340 meters, however much of the lake has not been completely sounded for depth therefore accurate capacity is not well understood. Competing uses place high demand on the waters of Lake Atitlán and serious problems of water pollution, soil erosion, and forest loss are prevalent. In 1996 the Authority for the Sustainable Management of the Atitlán Basin (AMSCLAE) was established which produced a Master Plan in 2000. However, the plan is still under revision and only a few measures are actually being implemented.

Water quality and pollution

Based on established biological and chemical standards, every water body in Guatemala is considered to be moderately if not critically contaminated. Upper aquifers in major urban areas are contaminated from a variety of sources. In Guatemala City, untreated storm water is injected into the upper aquifer in an attempt to recharge the water supply of the city. Leaching from the landfill in Guatemala City has also severely contaminated the local aquifers and generally, only deep confined aquifers should be considered safe from biological and chemical contamination. [2]

Sewage from Guatemala City has caused the Villalobos and Las Vacas Rivers to be considered the most contaminated streams in the country. Additionally, biological contamination of shallow aquifers by pathogens due to the improper disposal of human or animal wastes is a problem in many populated and rural areas of the country. In agricultural areas, pesticides are a primary source of contamination. Chemical contamination results from the use of fertilizers and pesticides in the sugarcane and banana plantations of the Pacific and Caribbean coastal plains. Along both coasts are streams, marshes, and swamps that contain large quantities of brackish or saline water and unless desalinated, these sources are unsuitable for most uses. [2]

Atitlan Lake. Picture taken near Santa Catarina Palopo. Atitlan Lake.jpg
Atitlán Lake. Picture taken near Santa Catarina Palopó.

Water resources management by sector

Water coverage and usage

Potable water demand in Guatemala is primarily met with surface water. In urban areas, 70% of their water is surface water while the figure rises to 90% in rural areas. The rest of the water needs are met with groundwater. Out of 329 municipalities, 66% of the water systems utilize gravity to deliver water, another 19% of the systems use pumps and about 15% of the systems use both gravity and pumps. Total annual demand in 2010 is about 835 million m3. About 95% of the total population has potable water coverage. Of this figure, only 75% actually have a house connections while the remainder will carry water from nearby wells, rivers, and other sources. [3]

Water supply and sanitation

Information below taken from: Water supply and sanitation in Guatemala

According to the WHO/UNICEF Joint Monitoring Programme for Water Supply and Sanitation, access to water and sanitation services has slowly risen over the years in Guatemala. In 1990, 79% of the total population had access to improved water sources, while in 2004, 95% of the population had access. Sanitation coverage has also risen, from 58% of the total population having access to adequate sanitation in 1990, to 86% with access in 2004. The government of Guatemala estimates that the population without access to water services is growing at a rate of at least 100,000 people every year. [7]

Irrigation and drainage

For more information see: Historical background of Irrigation in Guatemala

Irrigation in Guatemala is concentrated in three regions of the country. The Atlantic coast region has low humidity and high evapotranspiration so irrigation is needed for the cultivation of bananas, tomatoes, watermelon, and tobacco. The high plains region has very little rain for much of the year and with fertile volcanic soils that do not retain moisture very well. Without irrigation, there is only one harvest per year so crops such as basic grains require irrigation. The lower coastal zones have irrigated sugarcane and banana plantations. [3]

Irrigation in Guatemala is divided into three key types: i) private irrigation that is normally controlled by a family, company, or community agriculture system. Many of the private plantations are irrigated with gravity water systems; ii) state owned and operated irrigation programs and; iii) small-scale communal irrigation systems which normally are very efficient. [3]

The operation and maintenance of state run irrigation systems is paid for with fees based on surface area irrigated and not by how much water is used. Generally, the collected fees do not cover the real costs of energy needed to irrigate the land. There is a more recent fee aimed at covering this difference that includes an annual payment for a period of 40 years whereby the state will recuperate about 60% of the money invested on projects. [3]

The Master Plan for Irrigation and Drainage (Plan de Accion para la Modernizacion y Fomento de la Agricultura Bajo Riego)(PLAMAR) is effectively the technical division of irrigation and drainage under the Ministry of Agriculture. Furthermore, PLAMAR is the national action plan for the modernization and promotion of lands under irrigation while promoting and coordinating irrigation projects. [8] PLAMAR identified 209,419 ha's under cultivation that had drainage problems; however, regions under irrigation (169,302 ha) did not show evidence of drainage nor salinity problems. The lack of adequate infrastructure to quickly drain large amounts of water has caused flooding problems in the southern coastal regions. [3]

Hydropower

Beginning in the 1970s, Guatemala became heavily invested on hydropower with the construction of large hydroelectric dams. The Chixoy hydroelectric project provides about 15% of the country's power. As of 2013, hydropower accounted for 47% of Guatemala's total electricity generation, with oil, diesel and biomass-fired plants accounting for the rest. [9] The National Institute of Electricity (INDE)(El Instituto Nacional de Electrificacion) encouraged the private sector to build over 1,000 megawatts (MW) of new hydropower in Guatemala. Additionally, INDE constructed the following projects: 340MW Chulac, 130MW Xalala, 135-MW Serchil, 69MW Oregano, 60MW Santa Maria II, 59MW Camotan, and the 23MW El Palmar. [10] In 2008, Guatemala was either planning or constructing about 25 hydroelectricity plants throughout Guatemala totaling approximately 2500 MW. [11]

Ministries

Service Providers

Research Institutes

Cooperation with El Salvador and Honduras

A map of Guatemala. Un-guatemala.png
A map of Guatemala.

The upper watershed of the Lempa River is shared by Guatemala, El Salvador, and Honduras, as outlined in the Trifinio Plan, which was established and signed by the aforementioned countries to address economic and environmental problems in the Lempa River basin, and foster cooperation and regional integration. The Trifinio plan or treaty sought to provide a more viable and effective alternative to unilateral development thereby concentrating on greater multinational integration. [17]

The Trifinio region covers an area of about 7,500 km2 in the border areas of Honduras, Guatemala, and El Salvador. The region is made up of 45 municipalities whereby 22 belong to Honduras within the departments of Ocotepeque and Copán, 15 are situated in Guatemala corresponding to the departments of Chiquimula and Jutiapa, and 8 are in the departments of Santa Ana and Chalatenango in El Salvador. [18]

In the early stages of the Trifinio Plan’s development the commission studied three international river basins. In 1987 they developed a new plan involving the Lempa River Basin, the Ulúa River, and the Motagua River. The Motagua and Ulúa rivers were eventually dropped, leaving the Lempa River as the Trifinio Plan’s primary focus. [17]

Multi-lateral assistance

The Central American Water Resource Management Network (CARA) was initiated in 1999 with the backing of the United Nations Development Program (UNDP) to build capacity in hydrogeology and water resource management throughout the Central America region. The emphasis is on groundwater reflecting a greater than 80% dependence on groundwater for water supply throughout the Central American region. Member countries include Costa Rica, Nicaragua, Guatemala, El Salvador, Honduras and Bolivia with additional support from Canada and Mexico. [19]

The World Wildlife Foundation (WWF) in collaboration with local partners, is developing a water fund to finance responsible watershed management in Guatemala’s Sierra de las Minas Biosphere. Known as the 'water fund', water users which include bottling companies, distilleries, hydroelectric plants, and paper processing mills are showing their awareness that water is a strategic resource whose conservation must be planned for the long term, by making significant financial contributions towards environmental services in the region. The fund is meant to encourage short-term investments to optimize industrial water use as a means of reducing effluents to the Motagua and Polochic Rivers. [20]

The World Bank is implementing the $85 million project aimed at improving the capacity of the country to respond to and recover from flooding caused by tropical storms and hurricanes. The project is scheduled to conclude in 2012. The development objective of the Catastrophe Development Policy Loan Deferred Draw Down Option Project for Guatemala is to enhance the Government's capacity to implement its disaster risk management program for natural disasters. This objective will be achieved by supporting policy and institutional reform in the following aspects of disaster risk management: i) improving risk identification and monitoring; ii) increasing disaster risk reduction investments; iii) strengthening institutions and planning capacity for risk management; and iv) developing risk financing strategies. [21]

The Inter-American Development Bank has three ongoing projects under implementation and many more that have been completed since 1961. One particular project underway focuses on improving access to potable water for rural communities. The $50 million project was designed to benefit at least 500,000 new rural consumers. Families will have easier access to safe drinking water, which will improve their health and save them time and effort spent on carrying water from remote sources. The program finances the construction of water and sanitation systems for individual communities or groups of communities with an average of 900 people. Each community will make all key decisions related to their respective projects, selecting the system that best suits their needs and capacity. Autonomous water associations were established by the residents of each village and serve to manage the services, and cover operation and maintenance costs by collecting tariffs from users. [22]

UNICEF supports water and sanitation projects, and typically implements short–term projects, including systems with pipelines less than 3 kilometers, manual pumps and school sanitation in very vulnerable communities of four municipalities of Huehuetenango, two municipalities of Quiché, and two in Chiquimula. UNICEF emphasizes the technical strengthening of municipal governments and advocacy to influence the government to assign greater funding for water and sanitation. [23]

Non-Governmental Organizations:

Bi-lateral assistance:

Importance of wetland sites in Guatemala

Laguna Lachua. Lagunalachua.JPG
Laguna Lachuá.

Wetlands are key areas for their ability to consistently supply drinking water, treatment of wastewater by natural anaerobic and aerobic processes, offering water and fertile soils for agriculture and food production, absorbing floods after heavy rainfall and tidal surges during oceanic storms, and water storage in periods of droughts. The Ramsar Convention on Wetlands came into force in Guatemala October 26, 1990. Guatemala presently has 7 sites designated as Wetlands of International Importance, with a surface area of 628,592 hectares. [24]

Ramsar sites in Guatemala:

(Source: Ramsar 2009)

See also

Related Research Articles

<span class="mw-page-title-main">Klamath Basin</span> Region in the U.S. states of Oregon and California drained by the Klamath River

The Klamath Basin is the region in the U.S. states of Oregon and California drained by the Klamath River. It contains most of Klamath County and parts of Lake and Jackson counties in Oregon, and parts of Del Norte, Humboldt, Modoc, Siskiyou, and Trinity counties in California. The 15,751-square-mile (40,790 km2) drainage basin is 35% in Oregon and 65% in California. In Oregon, the watershed typically lies east of the Cascade Range, while California contains most of the river's segment that passes through the mountains. In the Oregon-far northern California segment of the river, the watershed is semi-desert at lower elevations and dry alpine in the upper elevations. In the western part of the basin, in California, however, the climate is more of temperate rainforest, and the Trinity River watershed consists of a more typical alpine climate.

Water supply and sanitation in Mexico is characterized by achievements and challenges. Among the achievements is a significant increase in access to piped water supply in urban areas as well as in rural areas between 1990 and 2010. Additionally, a strong nationwide increase in access to improved sanitation was observed in the same period. Other achievements include the existence of a functioning national system to finance water and sanitation infrastructure with a National Water Commission as its apex institution; and the existence of a few well-performing utilities such as Aguas y Drenaje de Monterrey.

While Peru accounts for about four per cent of the world's annual renewable water resources, over 98% of its water is available east of the Andes, in the Amazon region. The coastal area of Peru, with most of economic activities and more than half of the population, receives only 1.8% of the national freshwater renewable water resources. Economic and population growth are taking an increasing toll on water resources quantity and quality, especially in the coastal area of Peru.

Water resources management is a significant challenge for Mexico. The country has in place a system of water resources management that includes both central (federal) and decentralized institutions. Furthermore, water management is imposing a heavy cost to the economy.

Mexico, a classified arid and semi-arid country, has a total land area of 2 million square kilometres, 23% of which is equipped for irrigated agriculture. The agricultural sector plays an important role in the economic development of the country accounting for 8.4 of agricultural gross domestic product (GDP) and employing 23% of the economically active population. Irrigated agriculture contributes about 50% of the total value of agricultural production and accounts for about 70% of agriculture exports. Mexico's government initiated a number of structural reforms in the water sector aimed to introduce modern water management and irrigation.

Water resources are natural resources of water that are potentially useful for humans, for example as a source of drinking water supply or irrigation water. 97% of the water on Earth is salt water and only three percent is fresh water; slightly over two-thirds of this is frozen in glaciers and polar ice caps. The remaining unfrozen freshwater is found mainly as groundwater, with only a small fraction present above ground or in the air. Natural sources of fresh water include surface water, under river flow, groundwater and frozen water. Non-natural or human-made sources of fresh water can include wastewater that has been treated for reuse options, and desalinated seawater. People use water resources for agricultural, industrial and household activities.

There is a long and established framework for water resources management in Colombia. The Environment Ministry and up to 33 Regional Authorities, are in charge of water resources management and policies at the national and regional and watershed level, respectively. Other sectoral ministries are in charge of water demand for energy, water supply and sanitation and water for irrigation.

The water resources management system in Uruguay has been influenced by the general sense of water as an abundant resource in the country. Average annual rainfall is 1,182 mm, representing a contribution of 210 km3 annually throughout its territory. In 2002, the per capita renewable water resources was 41,065 cubic meters, way above the world average 8,467 m3 in 2006. Uruguay also shares one of the largest groundwater reserves in the world, the Guarani Aquifer, with Brazil, Argentina, Paraguay. The Guarani aquifer covers 1,200,000 square kilometers and has a storage capacity of 40,000 km3.

With surface water resources of 20 billion m3 per year, of which 12 billion m3 are groundwater recharge, water resources in the Dominican Republic could be considered abundant. But irregular spatial and seasonal distribution, coupled with high consumption in irrigation and urban water supply, translates into water scarcity. Rapid economic growth and increased urbanization have also affected environmental quality and placed strains on the Dominican Republic's water resources base. In addition, the Dominican Republic is exposed to a number of natural hazards, such as hurricanes, storms, floods, Drought, earthquakes, and fires. Global climate change is expected to induce permanent climate shocks to the Caribbean region, which will likely affect the Dominican Republic in the form of sea level rise, higher surface air and sea temperatures, extreme weather events, increased rainfall intensity and more frequent and more severe "El Niño-like" conditions.

Water Resources Management (WRM) in Chile is widely known for its 1981 Water Code—written after General Augusto Pinochet took control through a military coup d'état. Free-market mechanisms became the economic philosophy in WRM, including the development of water markets and tradable water permits. A major reform to the 1981 Water Code was signed in 2005 to address social equity and environmental protection concerns. Water resources management in Chile is shared among the private sector which provides investment for infrastructure and distribution, and agencies provide regulatory oversight, maintain records, and issue water rights. Chile is negotiating formalized agreements with both Bolivia and Argentina to manage shared resources and water storage projects. Chile is also supported in rural water supply with $150 million in loans by the World Bank and the Inter-American Development Bank.

Water resources management (WRM) in Honduras is a work in progress and at times has advanced; however, unstable investment and political climates, strong weather phenomena, poverty, lack of adequate capacity, and deficient infrastructures have and will continue to challenge developments to water resource management. The State of Honduras is working on a new General Water Law to replace the 1927 Law on Using National Waters and designed to regulate water use and management. The new water law will also create a Water Authority, and the National Council of Water Resources which will serve as an advising and consultative body.

The Choluteca river basin lies on the hot and dry southern Pacific coast of Honduras, and is bordered by Nicaragua to the east. The name Choluteca, thought to mean ‘broad valley,’ originates from the indigenous Chorotega tribe who inhabited the region prior to Spanish conquest. The Choluteca river and its tributaries together form the Cabeceras catchment located in southern Honduras where it stretches over four administrative departments covering 7,848 km2 and drains into the Pacific Ocean. The Choluteca river basin provides water to the capital city of Tegucigalpa with population around 1 million inhabitants.

<span class="mw-page-title-main">Water resources management in Argentina</span>

Water resources management (WRM) functions in Argentina are handled by multiple institutions operating at the national, provincial, and river basin level, with a variety of functions and jurisdictions. On the national level, the National Institute for Water and the Environment (INA) and the National Water and Sanitation Utility (AySA) are charged with the duties of researching, water resources preservation, developing services, and implementing water projects.

<span class="mw-page-title-main">Urban water management in Monterrey, Mexico</span> City in Nuevo León, Mexico

Early in the 20th century, Monterrey, Mexico began a successful economic metamorphosis and growth pattern that remains an exception in Mexico. This all began with increased investments in irrigation that fueled a boom in agriculture and ranching for this northern Mexican city. The economic growth has fueled income disparity for the 3.86 million residents who live in the Monterrey Metro area (MMA). In addition, the rapid urbanization has taken a large toll on the water resources. In addressing many of this challenges, the city of Monterrey has become a model for sound and effective Integrated urban water management.

<span class="mw-page-title-main">Water resources management in Syria</span>

Water resources management in Syria is confronted with numerous challenges. First, all of the country's major rivers are shared with neighboring countries, and Syria depends to a large extent on the inflow of water from Turkey through the Euphrates and its tributaries. Second, high population growth and urbanisation increase the pressure on water resources, resulting in localized groundwater depletion and pollution, for example in the Ghouta near Damascus. Third, there is no legal framework for integrated water resources management. Finally, the institutions in charge of water resources management are weak, being both highly centralized and fragmented between sectors, and they often lack the power to enforce regulations. Water resources policies have been focused on the construction of dams, the development of irrigated agriculture and occasional interbasin transfers, such as a pipeline to supply drinking water to Aleppo from the Euphrates. There are 165 dams in Syria with a total storage capacity of 19.6 km3. Demand management through metering, higher tariffs, more efficient irrigation technologies and the reduction of non-revenue water in drinking water supply has received less emphasis than supply management. The government implements a large program for the construction of wastewater treatment plants including the use of reclaimed water for irrigation.

Costa Rica is divided into three major drainage basins encompassing 34 watersheds with numerous rivers and tributaries, one major lake used for hydroelectric generation, and two major aquifers that serve to store 90% of the municipal, industrial, and agricultural water supply needs of Costa Rica. Agriculture is the largest water user demanding around 53% of total supplies while the sector contributes 6.5% to the Costa Rica GDP. About a fifth of land under cultivation is being irrigated by surface water. Hydroelectric power generation makes up a significant portion of electricity usage in Costa Rica and much of this comes from the Arenal dam.

Water resources management in Nicaragua is carried out by the National water utility and regulated by the Nicaraguan Institute of water. Nicaragua has ample water supplies in rivers, groundwater, lagoons, and significant rainfall. Distribution of rainfall is uneven though with more rain falling on an annual basis in the Caribbean lowlands and much lower amounts falling in the inland areas. Significant water resources management challenges include contaminated surface water from untreated domestic and industrial wastewater, and poor overall management of the available water resources.

Water resources management in El Salvador is characterized by difficulties in addressing severe water pollution throughout much of the country's surface waters due to untreated discharges of agricultural, domestic and industrial run off. The river that drains the capital city of San Salvador is considered to be polluted beyond the capability of most treatment procedures.

The management of Jamaica's freshwater resources is primarily the domain and responsibility of the National Water Commission (NWC). The duties of providing service and water infrastructure maintenance for rural communities across Jamaica are shared with the Parish Councils. Where possible efficiencies have been identified, the NWC has outsourced various operations to the private sector.

Water resources management in Belize is carried out by the Water and Sewerage Authority (WASA) in most cases. One of the primary challenges the country is facing with regard to water resources management, however, is the lack of coordinated and comprehensive policies and institutions. Furthermore, there are various areas of water management that are not well addressed at all such as groundwater data and provision of supply. Data on irrigation and drainage is not adequately available either. Demand on water resources is growing as the population increases, new economic opportunities are created, and the agriculture sector expands. This increased demand is placing new threats on the quality and quantity of freshwater resources. Other constant challenge for management entities are the constant threat of floods from tropical storms and hurricanes. The Belize National Emergency Management Organization (NEMO) is charged with flood management as they occur but it is unclear what institution has responsibility for stormwater infrastructures.

References

  1. FAO Aquastat 1988-2008
  2. 1 2 3 4 5 6 7 8 Spillman T.R.; Waite L.; Buckalew J.; Alas H.; Webster T.C. (2000). "WATER RESOURCES ASSESSMENT OF GUATEMALA" (PDF). US Army Corps of Engineers. Retrieved 2010-04-29.
  3. 1 2 3 4 5 6 7 FAO (2000). "Country profile: Guatemala". FAO. Retrieved 2013-11-19.
  4. Barrientos C.; Fernandez V.H. (1998). "CASE STUDY: GUATEMALA Water, Population, and Sanitation in the Mayan Biosphere Reserve of Guatemala". IUCN. Retrieved 2010-04-28.
  5. Global Nature Fund. "Lake Amatitlan - Guatemala" . Retrieved 2010-04-29.
  6. Reyna, Evelyn Irene. "Integrated Management of the Lake Amatitlan Basin: Authority for the Sustainable Management of Lake Amatitlan and its Basin" . Retrieved April 29, 2010.
  7. Inter-American Development Bank. 2003. Guatemala Rural Water and Sanitation Program (GU-0150) Loan Proposal.
  8. The World Bank (2009). "GUATEMALA: Country Note on Climate Change Aspects in Agriculture" (PDF). The World Bank. p. 4. Retrieved 2010-04-28.
  9. "International Energy Statistics: Guatemala". U.S. Energy Information Administration. Retrieved 21 July 2016.
  10. U.S. Department of Energy. "Ah Guatemala". U.S. Department of Energy. Retrieved 2010-04-26.
  11. Invest in Guatemala (2008). "Electric Energy Sector". Invest in Guatemala. Retrieved 2010-04-26.
  12. SEGEPLAN (2010). "Secretaría de Planificación y Programación de la Presidencia" (in Spanish). SEGEPLAN. Retrieved 2010-04-28.
  13. EMPAGUA (2010). "Empresa Municipal de Agua" (in Spanish). EMPAGUA. Retrieved 2010-04-28.
  14. INFOM (2010). "Instituto de Fomento Municipal" (in Spanish). INFOM. Retrieved 2010-04-28.
  15. AMSA (2010). "Autoridad para el Manejo Sostenible de la Cuenca y del Lago de Amatitlan" (in Spanish). AMSA. Retrieved 2010-04-28.
  16. INSIVUMEH (2010). "Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hidrologia" (in Spanish). INSIVUMEH. Retrieved 2010-04-28.
  17. 1 2 López A. (2004). "Environmental Conflicts and Regional Cooperation in the Lempa River Basin The Role of Central America´s Plan Trifinio" (PDF). The Environmental Change and Security Project (ECSP) Woodrow Wilson International Center for Scholars. pp. 13–15. Retrieved 2010-03-25.
  18. Artiga R. (2003). "Water Conflict and Cooperation/Lempa River Basin". UNESCO. Retrieved 2010-03-25.
  19. Bethune D. (2008). "Capacity Building for Integrated Water Resources Management". Central American Water Resource Management Network. Retrieved April 28, 2010.
  20. Morales C. (2005). "Water fund finances responsible watershed management in Guatemala". WWF. Retrieved April 28, 2010.
  21. The World Bank (2009). "Catastrophe Development Policy Loan Deferred Draw Down Option Project". The World Bank. Retrieved April 28, 2010.
  22. The Inter American Development Bank (2003). "Rural Water Investment Program". The Inter American Development Bank. Retrieved April 28, 2010.
  23. Water For People (2008). "Water For People: Guatemala Country Strategy - 2008-2011" (PDF). Water For People. Retrieved March 1, 2010.
  24. Ramsar (2010). "Ramsar in Guatemala" . Retrieved April 29, 2010.