3G MIMO

Last updated

3G MIMO describes MIMO techniques which have been considered as 3G standard techniques.

Contents

MIMO, as the state of the art of intelligent antenna (IA), improves the performance of radio systems by embedding electronics intelligence into the spatial processing unit. Spatial processing includes spatial precoding at the transmitter and spatial postcoding at the receiver, which are dual each other from information signal processing theoretic point of view. Intelligent antenna is technology which represents smart antenna, multiple antenna (MIMO), self-tracking directional antenna, cooperative virtual antenna and so on.

Technology

Spatial precoding of intelligent antenna includes spatial beamforming and spatial coding. In wireless communications, spatial precoding has been developing for high reliability, high rate and lower interference as shown in the following table.

Summary of 3G MIMO

The table summarizes the history of 3G MIMO techniques candidated for 3G standards. Although the table additionally contains the future part but the contents are not clearly filled out since the future is not precisely predictable.

Generation3G3G evolutionBeyond 3GFuture
Deployment2003/42005~6/2007~8/2009~102012~20152015~2020
StandardWCDMAHSPA/HSPA+/LTEIMT-AdvancedBeyond IMT-Adv
Total rate384kbit/s14/42/65~250Mbit/s1Gbit/s>10Gbit/s
Bandwidth5 MHz5 MHz/20 MHz20~100 MHz>100 MHz
Requirement ParadigmHigh reliability (High quality)High rate (High capacity)Lower interferenceHigh intelligence
MethodSpatial diversitySpatial multiplexingSpatial cancellationAmbient intelligence
Spatial coding (SC)Spatial diversity codingSpatial multiplexing codingSpatial cancellation codingAmbient intelligence coding
Spatial beamforming (SB)Single-stream beamformingMulti-stream beamformingInterference nulling beamformingAmbient intelligence beamforming
ExamplesSC: Alamouti coding, SB: TxAASC: BLAST coding, SB: SVDSC: DPC, SB: MU-BFSuch as cooperative MIMO

IA in ad hoc networking

IA technology enables client terminals, which have either multiple antennas or a self-tracking directional antenna, to communicate to each other with as high as possible signal-to-interference-and-noise ratio (SINR). Assume that there is a source terminal, a destination terminal, and some candidate interference terminals. Compared to conventional approaches, an advanced IA based terminal will perform spatial precoding (spatial beamforming and/or spatial coding) not only to enhance the signal power at the destination terminal but also to diminish the interfering power at interference terminals. As a human does, the advanced IA terminal is given to know that occurring high interference to other terminals will eventually degrade the performance of the associated wireless network.

Principal Issues of Research

The following items list the issues of the multiple antenna research aims to improve the performance of radio communications.

Principal Definitions

Definitions

Here are the definition of principal keywords to clarify the objective and the operations of intelligent antenna.

TerminologyDefinition
Intelligent antenna Antenna technology that uses some sort of electronic intelligence to enhance wireless system performance. Electronic intelligence is implemented by spatial pre/post-coding techniques such as spatial information coding and spatial signal beamforming. Smart antenna has been more widely used to represent the similar meaning.
Smart antenna In the narrow sense, antenna technology that employs array antennas with beamforming techniques to enhance wireless system performance. In the wide sense, equivalent terminology to intelligent antenna.
MIMO Wide sense and well-known: MIMO is the state of the art of IA and SA.
  • Narrow sense: Antenna systems that employ multiple antennas at both the transmitter and the receiver.

Reference Web Sites

The following items list the web sites related to the multiple antenna research.

TypesAntenna configurationBasic solutionAdvanced solution
Diversityd > wavelengthRx: MRC, MMSE, etc., Tx: STTD, CLTDBLAST (spatial multiplexing)
Phased Arrayd < wavelengthSwitched beamsSteered beams

See also

Related Research Articles

<span class="mw-page-title-main">Space-division multiple access</span> Channel-access method in communications

Space-division multiple access (SDMA) is a channel access method based on creating parallel spatial pipes using advanced antenna technology next to higher capacity pipes through spatial multiplexing and/or diversity, by which it is able to offer superior performance in radio multiple access communication systems. In traditional mobile cellular network systems, the base station has no information on the position of the mobile units within the cell and radiates the signal in all directions within the cell in order to provide radio coverage. This method results in wasting power on transmissions when there are no mobile units to reach, in addition to causing interference for adjacent cells using the same frequency, so called co-channel cells. Likewise, in reception, the antenna receives signals coming from all directions including noise and interference signals. By using smart antenna technology and differing spatial locations of mobile units within the cell, space-division multiple access techniques offer attractive performance enhancements. The radiation pattern of the base station, both in transmission and reception, is adapted to each user to obtain highest gain in the direction of that user. This is often done using phased array techniques.

4G is the fourth generation of broadband cellular network technology, succeeding 3G and preceding 5G. A 4G system must provide capabilities defined by ITU in IMT Advanced. Potential and current applications include amended mobile web access, IP telephony, gaming services, high-definition mobile TV, video conferencing, and 3D television.

<span class="mw-page-title-main">Beamforming</span> Signal processing technique used in sensor arrays for directional signal transmission or reception

Beamforming or spatial filtering is a signal processing technique used in sensor arrays for directional signal transmission or reception. This is achieved by combining elements in an antenna array in such a way that signals at particular angles experience constructive interference while others experience destructive interference. Beamforming can be used at both the transmitting and receiving ends in order to achieve spatial selectivity. The improvement compared with omnidirectional reception/transmission is known as the directivity of the array.

Smart antennas are antenna arrays with smart signal processing algorithms used to identify spatial signal signatures such as the direction of arrival (DOA) of the signal, and use them to calculate beamforming vectors which are used to track and locate the antenna beam on the mobile/target. Smart antennas should not be confused with reconfigurable antennas, which have similar capabilities but are single element antennas and not antenna arrays.

<span class="mw-page-title-main">Antenna diversity</span> Redundancy method to improve communications reliability

Antenna diversity, also known as space diversity or spatial diversity, is any one of several wireless diversity schemes that uses two or more antennas to improve the quality and reliability of a wireless link. Often, especially in urban and indoor environments, there is no clear line-of-sight (LOS) between transmitter and receiver. Instead the signal is reflected along multiple paths before finally being received. Each of these bounces can introduce phase shifts, time delays, attenuations, and distortions that can destructively interfere with one another at the aperture of the receiving antenna.

An adaptive beamformer is a system that performs adaptive spatial signal processing with an array of transmitters or receivers. The signals are combined in a manner which increases the signal strength to/from a chosen direction. Signals to/from other directions are combined in a benign or destructive manner, resulting in degradation of the signal to/from the undesired direction. This technique is used in both radio frequency and acoustic arrays, and provides for directional sensitivity without physically moving an array of receivers or transmitters.

Radio resource management (RRM) is the system level management of co-channel interference, radio resources, and other radio transmission characteristics in wireless communication systems, for example cellular networks, wireless local area networks, wireless sensor systems, and radio broadcasting networks. RRM involves strategies and algorithms for controlling parameters such as transmit power, user allocation, beamforming, data rates, handover criteria, modulation scheme, error coding scheme, etc. The objective is to utilize the limited radio-frequency spectrum resources and radio network infrastructure as efficiently as possible.

Precoding is a generalization of beamforming to support multi-stream transmission in multi-antenna wireless communications. In conventional single-stream beamforming, the same signal is emitted from each of the transmit antennas with appropriate weighting such that the signal power is maximized at the receiver output. When the receiver has multiple antennas, single-stream beamforming cannot simultaneously maximize the signal level at all of the receive antennas. In order to maximize the throughput in multiple receive antenna systems, multi-stream transmission is generally required.

Multi-user MIMO (MU-MIMO) is a set of multiple-input and multiple-output (MIMO) technologies for multipath wireless communication, in which multiple users or terminals, each radioing over one or more antennas, communicate with one another. In contrast, single-user MIMO (SU-MIMO) involves a single multi-antenna-equipped user or terminal communicating with precisely one other similarly equipped node. Analogous to how OFDMA adds multiple-access capability to OFDM in the cellular-communications realm, MU-MIMO adds multiple-user capability to MIMO in the wireless realm.

<span class="mw-page-title-main">Carrier interferometry</span>

Carrier Interferometry(CI) is a spread spectrum scheme designed to be used in an Orthogonal Frequency-Division Multiplexing (OFDM) communication system for multiplexing and multiple access, enabling the system to support multiple users at the same time over the same frequency band.

In radio, cooperative multiple-input multiple-output is a technology that can effectively exploit the spatial domain of mobile fading channels to bring significant performance improvements to wireless communication systems. It is also called network MIMO, distributed MIMO, virtual MIMO, and virtual antenna arrays.

<span class="mw-page-title-main">WiMAX MIMO</span>

WiMAX MIMO refers to the use of Multiple-input multiple-output communications (MIMO) technology on WiMAX, which is the technology brand name for the implementation of the standard IEEE 802.16.

<span class="mw-page-title-main">MIMO</span> Use of multiple antennas in radio

In radio, multiple-input and multiple-output (MIMO) is a method for multiplying the capacity of a radio link using multiple transmission and receiving antennas to exploit multipath propagation. MIMO has become an essential element of wireless communication standards including IEEE 802.11n, IEEE 802.11ac, HSPA+ (3G), WiMAX, and Long Term Evolution (LTE). More recently, MIMO has been applied to power-line communication for three-wire installations as part of the ITU G.hn standard and of the HomePlug AV2 specification.

Many antennas is a smart antenna technique which overcomes the performance limitation of single user multiple-input multiple-output (MIMO) techniques. In cellular communication, the maximum number of considered antennas for downlink is 2 and 4 to support 3GPP Long Term Evolution (LTE) and IMT Advanced requirements, respectively. Since the available spectrum band will probably be limited while the data rate requirement will continuously increase beyond IMT-A to support the mobile multimedia services, it is highly probable that the number of transmit antennas at the base station must be increased to 8–64 or more. The installation of many antennas at single base stations introduced many challenges and required development of several high technologies: a new SDMA engine, a new beamforming algorithm and a new antenna array.

WSDMA is a high bandwidth channel access method, developed for multi-transceiver systems such as active array antennas. WSDMA is a beamforming technique suitable for overlay on the latest air-interface protocols including WCDMA and OFDM. WSDMA enabled systems can determine the angle of arrival (AoA) of received signals to spatially divide a cell sector into many sub-sectors. This spatial awareness provides information necessary to maximise Carrier to Noise+Interference Ratio (CNIR) link budget, through a range of digital processing routines. WSDMA facilitates a flexible approach to how uplink and downlink beamforming is performed and is capable of spatial filtering known interference generating locations.

The first smart antennas were developed for military communications and intelligence gathering. The growth of cellular telephone in the 1980s attracted interest in commercial applications. The upgrade to digital radio technology in the mobile phone, indoor wireless network, and satellite broadcasting industries created new opportunities for smart antennas in the 1990s, culminating in the development of the MIMO technology used in 4G wireless networks.

Multiple-input, multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM) is the dominant air interface for 4G and 5G broadband wireless communications. It combines multiple-input, multiple-output (MIMO) technology, which multiplies capacity by transmitting different signals over multiple antennas, and orthogonal frequency-division multiplexing (OFDM), which divides a radio channel into a large number of closely spaced subchannels to provide more reliable communications at high speeds. Research conducted during the mid-1990s showed that while MIMO can be used with other popular air interfaces such as time-division multiple access (TDMA) and code-division multiple access (CDMA), the combination of MIMO and OFDM is most practical at higher data rates.

<span class="mw-page-title-main">Robert W. Heath Jr.</span> American electrical engineer and professor

Robert W. Heath Jr. is an American electrical engineer, researcher, educator, wireless technology expert, and a Professor in the Department of Electrical and Computer Engineering at the University of California, San Diego. He is also the president and CEO of MIMO Wireless Inc. He was the founding director of the Situation Aware Vehicular Engineering Systems initiative.

Per-user unitary rate control (PU2RC) is a multi-user MIMO (multiple-input and multiple-output) scheme. PU2RC uses both transmission pre-coding and multi-user scheduling. By doing that, the network capacity is further enhanced than the capacity of the single-user MIMO scheme.

David J. Love is an American professor of engineering at Purdue University. He has made numerous contributions to wireless communications, signal processing, information theory, and coding. Much of his research has centered on understanding how feedback and other forms of side information can be utilized during communication.

References

  1. "MARS@Lucent Multiple Antenna Research and Solutions". Archived from the original on 1 October 2007.
  2. Polakos, Paul (1 October 2002). "Intelligent Antennas and Blast for cdma2000 Networks" (PDF).
  3. "Multiple antennas research". imec.be. Archived from the original on 4 October 2007. Retrieved 29 June 2021.
  4. Li, Kuo-Hui. "What is a smart antenna?". Archived from the original on 27 June 2007. Retrieved 29 June 2021.
  5. https://web.archive.org/web/20070928011627/http://www.iec.org/online/tutorials/smart_ant/index.html, https://web.archive.org/web/20070928011846/http://www.iec.org/online/tutorials/acrobat/smart_ant.pdf
  6. "What is MIMO (Multiple input, multiple output)?".
  7. "Smart Antennas Research Group". Stanford University. Archived from the original on 2013-10-20. Retrieved 2007-10-03.
  8. http://www.cdg.org/technology/cdma_technology/smart_antennas/index.asp, http://www.cdmatech.com/products/how_mimo_works.jsp
  9. "MIMO Technology: Overview". Nortel. Archived from the original on 26 May 2007. Retrieved 12 January 2022.
  10. https://web.archive.org/web/20070928045359/http://www.visantstrategies.com/market_research/mimo_intelligent_antenna.html, http://www.researchandmarkets.com/reports/c21454
  11. "Satellite tracking units for antenna diversity and self-steering antennas". Magnetic Sciences. Archived from the original on 14 October 2007. Retrieved 12 January 2022.