Arctic sea ice ecology and history

Last updated
Mosaic of the Arctic.jpg
September 2, 2012 (The record lowest minimum ever observed in the satellite record occurred on September 16, 2012, when sea ice plummeted to 3.41 million square kilometers (1.32 million square miles). This image shows the area two weeks earlier).
January 1, 2013 through September 10, 2016, the date when the sea ice reached its annual minimum extent.
Satellite views of Arctic sea ice.

The Arctic sea ice covers less area in the summer than in the winter. The multi-year (i.e. perennial) sea ice covers nearly all of the central deep basins. The Arctic sea ice and its related biota are unique, and the year-round persistence of the ice has allowed the development of ice endemic species, meaning species not found anywhere else.

Contents

There are differing scientific opinions about how long perennial sea ice has existed in the Arctic. Estimates range from 700,000 to 4 million years.

Endemic species

The specialized, sympagic (i.e. ice-associated) community within the sea ice is found in the tiny (mostly <1mm diameter) liquid filled network of pores and brine channels or at the ice-water interface. The organisms living within the sea ice are consequently small (<1mm), and dominated by bacteria, and unicellular plants and animals. Diatoms, a certain type of algae, are considered the most important primary producers inside the ice with more than 200 species occurring in Arctic sea ice. In addition, flagellates contribute substantially to biodiversity, but their species number is unknown.

Protozoan and metazoan ice meiofauna, in particular turbellarians, nematodes, crustaceans and rotifers, can be abundant in all ice types year-round. In spring, larvae and juveniles of benthic animals (e.g. polychaetes and molluscs) migrate into coastal fast ice to feed on the ice algae for a few weeks.

A partially endemic fauna, comprising mainly gammaridean amphipods, thrives at the underside of ice floes. Locally and seasonally occurring at several hundred individuals per square meter, they are important mediators for particulate organic matter from the sea ice to the water column. Ice-associated and pelagic crustaceans are the major food sources for polar cod (Boreogadus saida) that occurs in close association with sea ice and acts as the major link from the ice-related food web to seals and whales.

While previous studies of coastal and offshore sea ice provided a glimpse of the seasonal and regional abundances and the diversity of the ice-associated biota, biodiversity in these communities is virtually unknown for all groups, from bacteria to metazoans. Many taxa are likely still undiscovered due to the methodological problems in analyzing ice samples. The study of diversity of ice related environments is urgently required before they ultimately change with altering ice regimes and the likely loss of the multi-year ice cover.

Dating Arctic ice

Estimates of how long the Arctic Ocean has had perennial ice cover vary. [1] Those estimates range from 700,000 years in the opinion of Worsley and Herman, [2] to 4 million years in the opinion of Clark. [3] Here is how Clark refuted the theory of Worsley and Herman:

Recently, a few coccoliths have been reported from late Pliocene and Pleistocene central Arctic sediment (Worsley and Herman, 1980). Although this is interpreted to indicate episodic ice-free conditions for the central Arctic, the occurrence of ice-rafted debris with the sparse coccoliths is more easily interpreted to represent transportation of coccoliths from ice-free continental seas marginal to the central Arctic. The sediment record as well as theoretical considerations make strong argument against alternating ice-covered and ice-free....The probable Middle Cenozoic development of an ice cover, accompanied by Antarctic ice development and a late shift of the Gulf Stream to its present position, were important events that led to the development of modern climates. The record suggests that altering the present ice cover would have profound effects on future climates. [3]

More recently, Melnikov has noted that, "There is no common opinion on the age of the Arctic sea ice cover." [4] Experts apparently agree that the age of the perennial ice cover exceeds 700,000 years but disagree about how much older it is. [1] However, some research indicates that a sea area north of Greenland may have been open during the Eemian interglacial 120,000 years ago. Evidence of subpolar foraminifers (Turborotalita quinqueloba) indicate open water conditions in that area. This is in contrast to Holocene sediments that only show polar species. [5]

See also

Further reading

Footnotes

  1. 1 2 Butt, F. A.; H. Drange; A. Elverhoi; O. H. Ottera; A. Solheim (2002). "The Sensitivity of the North Atlantic Arctic Climate System to Isostatic Elevation Changes, Freshwater and Solar Forcings" (PDF). 21 (14–15). Quaternary Science Reviews: 1643–1660. OCLC   108566094. Archived from the original (PDF) on 2008-09-10.{{cite journal}}: Cite journal requires |journal= (help)
  2. Worsley, Thomas R.; Yvonne Herman (1980-10-17). "Episodic Ice-Free Arctic Ocean in Pliocene and Pleistocene Time: Calcareous Nannofossil Evidence". Science. 210 (4467): 323–325. Bibcode:1980Sci...210..323W. doi:10.1126/science.210.4467.323. PMID   17796050. S2CID   149592.
  3. 1 2 Clark, David L. (1982). "The Arctic Ocean and Post-Jurassic Paleoclimatology". Climate in Earth History: Studies in Geophysics. Washington, D.C.: The National Academies Press. p. 133. ISBN   978-0-309-03329-9.
  4. Melnokov, I. A. (1997). The Arctic Sea Ice Ecosystem. CRC Press. p. 172. ISBN   978-2-919875-04-7.
  5. Mikkelsen, Naja et al. "Radical past climatic changes in the Arctic Ocean and a geophysical signature of the Lomonosov Ridge north of Greenland" (2004).

Related Research Articles

<span class="mw-page-title-main">Ringed seal</span> Species of carnivore

The ringed seal is an earless seal inhabiting the Arctic and sub-Arctic regions. The ringed seal is a relatively small seal, rarely greater than 1.5 m in length, with a distinctive patterning of dark spots surrounded by light grey rings, hence its common name. It is the most abundant and wide-ranging ice seal in the Northern Hemisphere, ranging throughout the Arctic Ocean, into the Bering Sea and Okhotsk Sea as far south as the northern coast of Japan in the Pacific and throughout the North Atlantic coasts of Greenland and Scandinavia as far south as Newfoundland, and including two freshwater subspecies in northern Europe. Ringed seals are one of the primary prey of polar bears and killer whales, and have long been a component of the diet of indigenous people of the Arctic.

<span class="mw-page-title-main">Sea ice</span> Ice formed from frozen seawater

Sea ice arises as seawater freezes. Because ice is less dense than water, it floats on the ocean's surface. Sea ice covers about 7% of the Earth's surface and about 12% of the world's oceans. Much of the world's sea ice is enclosed within the polar ice packs in the Earth's polar regions: the Arctic ice pack of the Arctic Ocean and the Antarctic ice pack of the Southern Ocean. Polar packs undergo a significant yearly cycling in surface extent, a natural process upon which depends the Arctic ecology, including the ocean's ecosystems. Due to the action of winds, currents and temperature fluctuations, sea ice is very dynamic, leading to a wide variety of ice types and features. Sea ice may be contrasted with icebergs, which are chunks of ice shelves or glaciers that calve into the ocean. Depending on location, sea ice expanses may also incorporate icebergs.

<span class="mw-page-title-main">Coccolith</span>

Coccoliths are individual plates of calcium carbonate formed by coccolithophores which are arranged around them in a coccosphere.

<span class="mw-page-title-main">Beaufort Sea</span> Marginal sea of the Arctic Ocean north of the Northwest Territories, the Yukon, and Alaska

The Beaufort Sea is a marginal sea of the Arctic Ocean, located north of the Northwest Territories, the Yukon, and Alaska, and west of Canada's Arctic islands. The sea is named after Sir Francis Beaufort, a hydrographer. The Mackenzie River, the longest in Canada, empties into the Canadian part of the Beaufort Sea west of Tuktoyaktuk, which is one of the few permanent settlements on the sea's shores.

<span class="mw-page-title-main">Chukchi Sea</span> Marginal sea of the Arctic Ocean north of the Bering Strait

Chukchi Sea, sometimes referred to as the Chuuk Sea, Chukotsk Sea or the Sea of Chukotsk, is a marginal sea of the Arctic Ocean. It is bounded on the west by the Long Strait, off Wrangel Island, and in the east by Point Barrow, Alaska, beyond which lies the Beaufort Sea. The Bering Strait forms its southernmost limit and connects it to the Bering Sea and the Pacific Ocean. The principal port on the Chukchi Sea is Uelen in Russia. The International Date Line crosses the Chukchi Sea from northwest to southeast. It is displaced eastwards to avoid Wrangel Island as well as the Chukotka Autonomous Okrug on the Russian mainland.

<span class="mw-page-title-main">Fauna</span> Set of animal species in any particular region and time

Fauna is all of the animal life present in a particular region or time. The corresponding term for plants is flora, and for fungi, it is funga. Flora, fauna, funga and other forms of life are collectively referred to as biota. Zoologists and paleontologists use fauna to refer to a typical collection of animals found in a specific time or place, e.g. the "Sonoran Desert fauna" or the "Burgess Shale fauna". Paleontologists sometimes refer to a sequence of faunal stages, which is a series of rocks all containing similar fossils. The study of animals of a particular region is called faunistics.

<span class="mw-page-title-main">Byrd Polar and Climate Research Center</span>

The Byrd Polar and Climate Research Center (BPCRC) is a polar, alpine, and climate research center at The Ohio State University founded in 1960.

<span class="mw-page-title-main">Sympagic ecology</span>

A sympagic environment is one where water exists mostly as a solid, ice, such as a polar ice cap or glacier. Solid sea ice is permeated with channels filled with salty brine. These briny channels and the sea ice itself have its ecology, referred to as "sympagic ecology".

<i>Emiliania huxleyi</i> Unicellular algae responsible for the formation of chalk

Emiliania huxleyi is a species of coccolithophore found in almost all ocean ecosystems from the equator to sub-polar regions, and from nutrient rich upwelling zones to nutrient poor oligotrophic waters. It is one of thousands of different photosynthetic plankton that freely drift in the euphotic zone of the ocean, forming the basis of virtually all marine food webs. It is studied for the extensive blooms it forms in nutrient-depleted waters after the reformation of the summer thermocline. Like other coccolithophores, E. huxleyi is a single-celled phytoplankton covered with uniquely ornamented calcite disks called coccoliths. Individual coccoliths are abundant in marine sediments although complete coccospheres are more unusual. In the case of E. huxleyi, not only the shell, but also the soft part of the organism may be recorded in sediments. It produces a group of chemical compounds that are very resistant to decomposition. These chemical compounds, known as alkenones, can be found in marine sediments long after other soft parts of the organisms have decomposed. Alkenones are most commonly used by earth scientists as a means to estimate past sea surface temperatures.

<span class="mw-page-title-main">Polar desert</span> Region of the Earth

Polar deserts are the regions of Earth that fall under an ice cap climate. Despite rainfall totals low enough to normally classify as a desert, polar deserts are distinguished from true deserts by low annual temperatures and evapotranspiration. Most polar deserts are covered in ice sheets, ice fields, or ice caps, and they are also called white deserts.

Ice algae are any of the various types of algal communities found in annual and multi-year sea or terrestrial ice. On sea ice in the polar oceans, ice algae communities play an important role in primary production. The timing of blooms of the algae is especially important for supporting higher trophic levels at times of the year when light is low and ice cover still exists. Sea ice algal communities are mostly concentrated in the bottom layer of the ice, but can also occur in brine channels within the ice, in melt ponds, and on the surface.

Polar ecology is the relationship between plants and animals in a polar environment. Polar environments are in the Arctic and Antarctic regions. Arctic regions are in the Northern Hemisphere, and it contains land and the islands that surrounds it. Antarctica is in the Southern Hemisphere and it also contains the land mass, surrounding islands and the ocean. Polar regions also contain the subantarctic and subarctic zone which separate the polar regions from the temperate regions. Antarctica and the Arctic lie in the polar circles. The polar circles are imaginary lines shown on maps to be the areas that receives less sunlight due to less radiation. These areas either receive sunlight or shade 24 hours a day because of the earth's tilt. Plants and animals in the polar regions are able to withstand living in harsh weather conditions but are facing environmental threats that limit their survival.

<span class="mw-page-title-main">Arctic Ocean</span> Ocean in the north polar region

The Arctic Ocean is the smallest and shallowest of the world's five major oceans. It spans an area of approximately 14,060,000 km2 (5,430,000 sq mi) and is known as the coldest of all the oceans. The International Hydrographic Organization (IHO) recognizes it as an ocean, although some oceanographers call it the Arctic Mediterranean Sea. It has been described approximately as an estuary of the Atlantic Ocean. It is also seen as the northernmost part of the all-encompassing World Ocean.

<span class="mw-page-title-main">Polar seas</span> Collective term for the Arctic Ocean and the southern part of the Southern Ocean

Polar seas is a collective term for the Arctic Ocean and the southern part of the Southern Ocean. In the coldest years, sea ice can cover around 13 percent of the Earth's total surface at its maximum, but out of phase in the two hemispheres. The polar seas contain a huge biome with many organisms.

<span class="mw-page-title-main">Pagophily</span>

Pagophily or pagophilia is the preference or dependence on water ice for some or all activities and functions. The term Pagophila is derived from the Ancient Greek pagos meaning "sea-ice", and philos meaning "-loving".

<span class="mw-page-title-main">North American Arctic</span>

The North American Arctic is composed of the northern polar regions of Alaska (USA), Northern Canada and Greenland. Major bodies of water include the Arctic Ocean, Hudson Bay, the Gulf of Alaska and North Atlantic Ocean. The North American Arctic lies above the Arctic Circle. It is part of the Arctic, which is the northernmost region on Earth. The western limit is the Seward Peninsula and the Bering Strait. The southern limit is the Arctic Circle latitude of 66° 33’N, which is the approximate limit of the midnight sun and the polar night.

<span class="mw-page-title-main">Arctic sea ice decline</span> Sea ice loss observed in recent decades in the Arctic Ocean

Arctic sea ice decline has occurred in recent decades and is an effect of climate change; sea ice in the Arctic Ocean has melted more than it refreezes in the winter. Global warming, caused by greenhouse gas forcing is responsible for the decline in Arctic sea ice. Implications of arctic sea ice decline may include: Ice-free summer, amplified arctic warming, polar vortex disruption, atmospheric chemistry changes, atmospheric regime changes, changes to plant, animal, and microbial life; changed shipping options and other impacts on humans.

Herald Shoal is a region of high benthic productivity on the Chukchi Sea shelf. It serves as rich foraging habitat for many species of marine mammals and birds.

<span class="mw-page-title-main">Sea ice microbial communities</span> Groups of microorganisms living within and at the interfaces of sea ice

Sea Ice Microbial Communities (SIMCO) refer to groups of microorganisms living within and at the interfaces of sea ice at the poles. The ice matrix they inhabit has strong vertical gradients of salinity, light, temperature and nutrients. Sea ice chemistry is most influenced by the salinity of the brine which affects the pH and the concentration of dissolved nutrients and gases. The brine formed during the melting sea ice creates pores and channels in the sea ice in which these microbes can live. As a result of these gradients and dynamic conditions, a higher abundance of microbes are found in the lower layer of the ice, although some are found in the middle and upper layers. Despite this extreme variability in environmental conditions, the taxonomical community composition tends to remain consistent throughout the year, until the ice melts.

Global paleoclimate indicators are the proxies sensitive to global paleoclimatic environment changes. They are mostly derived from marine sediments. Paleoclimate indicators derived from terrestrial sediments, on the other hand, are commonly influenced by local tectonic movements and paleogeographic variations. Factors governing the earth climate system include plate tectonics, which controls the configuration of continents, the interplay between the atmosphere and the ocean, and the earth's orbital characteristics. Global paleoclimate indicators are established based on the information extracted from the analyses of geologic materials, including biological, geochemical and mineralogical data preserved in marine sediments. Indicators are generally grouped into three categories; paleontological, geochemical and lithological.