In number theory, Bertrand's postulate is the theorem that for any integer , there exists at least one prime number with
A less restrictive formulation is: for every , there is always at least one prime such that
Another formulation, where is the -th prime, is: for
This statement was first conjectured in 1845 by Joseph Bertrand [2] (1822–1900). Bertrand himself verified his statement for all integers .
His conjecture was completely proved by Chebyshev (1821–1894) in 1852 [3] and so the postulate is also called the Bertrand–Chebyshev theorem or Chebyshev's theorem. Chebyshev's theorem can also be stated as a relationship with , the prime-counting function (number of primes less than or equal to ):
The prime number theorem (PNT) implies that the number of primes up to x, π(x), is roughly x/log(x), so if we replace x with 2x then we see the number of primes up to 2x is asymptotically twice the number of primes up to x (the terms log(2x) and log(x) are asymptotically equivalent). Therefore, the number of primes between n and 2n is roughly n/log(n) when n is large, and so in particular there are many more primes in this interval than are guaranteed by Bertrand's postulate. So Bertrand's postulate is comparatively weaker than the PNT. But PNT is a deep theorem, while Bertrand's Postulate can be stated more memorably and proved more easily, and also makes precise claims about what happens for small values of n. (In addition, Chebyshev's theorem was proved before the PNT and so has historical interest.)
The similar and still unsolved Legendre's conjecture asks whether for every n ≥ 1, there is a prime p such that n2 < p < (n + 1)2. Again we expect that there will be not just one but many primes between n2 and (n + 1)2, but in this case the PNT does not help: the number of primes up to x2 is asymptotic to x2/log(x2) while the number of primes up to (x + 1)2 is asymptotic to (x + 1)2/log((x + 1)2), which is asymptotic to the estimate on primes up to x2. So, unlike the previous case of x and 2x, we do not get a proof of Legendre's conjecture for large n. Error estimates on the PNT are not (indeed, cannot be) sufficient to prove the existence of even one prime in this interval. In greater detail, the PNT allows to estimate the boundaries for all ε > 0, there exists an S such that for x > S:
The ratio between the lower bound π((x+1)2) and the upper bound of π(x2) is
Note that since when , for all x > 0, and for a fixed ε, there exists an R such that the ratio above is less that 1 for all x > R. Thus, it does not ensure that there exists a prime between π(x2) and π((x+1)2). More generally, these simple bounds are not enough to prove that there exists a prime between π(xn) and π((x+1)n) for any positive integer n > 1.
In 1919, Ramanujan (1887–1920) used properties of the Gamma function to give a simpler proof than Chebyshev's. [4] His short paper included a generalization of the postulate, from which would later arise the concept of Ramanujan primes. Further generalizations of Ramanujan primes have also been discovered; for instance, there is a proof that
with pk the kth prime and Rn the nth Ramanujan prime.
Other generalizations of Bertrand's postulate have been obtained using elementary methods. (In the following, n runs through the set of positive integers.) In 1973, Denis Hanson proved that there exists a prime between 3n and 4n. [5] In 2006, apparently unaware of Hanson's result, M. El Bachraoui proposed a proof that there exists a prime between 2n and 3n. [6] El Bachraoui's proof is an extension of Erdős's arguments for the primes between n and 2n. Shevelev, Greathouse, and Moses (2013) discuss related results for similar intervals. [7]
Bertrand’s postulate over the Gaussian integers is an extension of the idea of the distribution of primes, but in this case on the complex plane. Thus, as Gaussian primes extend over the plane and not only along a line, and doubling a complex number is not simply multiplying by 2 but doubling its norm (multiplying by 1+i), different definitions lead to different results, some are still conjectures, some proven. [8]
Bertrand's postulate was proposed for applications to permutation groups. Sylvester (1814–1897) generalized the weaker statement with the statement: the product of k consecutive integers greater than k is divisible by a prime greater than k. Bertrand's (weaker) postulate follows from this by taking k = n, and considering the k numbers n + 1, n + 2, up to and including n + k = 2n, where n > 1. According to Sylvester's generalization, one of these numbers has a prime factor greater than k. Since all these numbers are less than 2(k + 1), the number with a prime factor greater than k has only one prime factor, and thus is a prime. Note that 2n is not prime, and thus indeed we now know there exists a prime p with n < p < 2n.
In 1932, Erdős (1913–1996) also published a simpler proof using binomial coefficients and the Chebyshev function , defined as:
where p ≤ x runs over primes. See proof of Bertrand's postulate for the details. [9]
Erdős proved in 1934 that for any positive integer k, there is a natural number N such that for all n > N, there are at least k primes between n and 2n. An equivalent statement had been proved in 1919 by Ramanujan (see Ramanujan prime).
It follows from the prime number theorem that for any real there is a such that for all there is a prime such that . It can be shown, for instance, that
which implies that goes to infinity (and, in particular, is greater than 1 for sufficiently large ). [10]
Non-asymptotic bounds have also been proved. In 1952, Jitsuro Nagura proved that for there is always a prime between and . [11]
In 1976, Lowell Schoenfeld showed that for , there is always a prime in the open interval . [12]
In his 1998 doctoral thesis, Pierre Dusart improved the above result, showing that for , , and in particular for , there exists a prime in the interval . [13]
In 2010 Pierre Dusart proved that for there is at least one prime in the interval . [14]
In 2016, Pierre Dusart improved his result from 2010, showing (Proposition 5.4) that if , there is at least one prime in the interval . [15] He also shows (Corollary 5.5) that for , there is at least one prime in the interval .
Baker, Harman and Pintz proved that there is a prime in the interval for all sufficiently large . [16]
Dudek proved that for all , there is at least one prime between and . [17]
Dudek also proved that the Riemann hypothesis implies that for all there is a prime satisfying
In integral calculus, an elliptic integral is one of a number of related functions defined as the value of certain integrals, which were first studied by Giulio Fagnano and Leonhard Euler. Their name originates from their originally arising in connection with the problem of finding the arc length of an ellipse.
In mathematics, the prime number theorem (PNT) describes the asymptotic distribution of the prime numbers among the positive integers. It formalizes the intuitive idea that primes become less common as they become larger by precisely quantifying the rate at which this occurs. The theorem was proved independently by Jacques Hadamard and Charles Jean de la Vallée Poussin in 1896 using ideas introduced by Bernhard Riemann.
The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter ζ (zeta), is a mathematical function of a complex variable defined as for , and its analytic continuation elsewhere.
In mathematics, the logarithmic integral function or integral logarithm li(x) is a special function. It is relevant in problems of physics and has number theoretic significance. In particular, according to the prime number theorem, it is a very good approximation to the prime-counting function, which is defined as the number of prime numbers less than or equal to a given value .
The Heaviside step function, or the unit step function, usually denoted by H or θ, is a step function named after Oliver Heaviside, the value of which is zero for negative arguments and one for positive arguments. Different conventions concerning the value H(0) are in use. It is an example of the general class of step functions, all of which can be represented as linear combinations of translations of this one.
In mathematics, analytic number theory is a branch of number theory that uses methods from mathematical analysis to solve problems about the integers. It is often said to have begun with Peter Gustav Lejeune Dirichlet's 1837 introduction of Dirichlet L-functions to give the first proof of Dirichlet's theorem on arithmetic progressions. It is well known for its results on prime numbers and additive number theory.
In mathematics, Bertrand's postulate states that, for each , there is a prime such that . First conjectured in 1845 by Joseph Bertrand, it was first proven by Chebyshev, and a shorter but also advanced proof was given by Ramanujan.
In mathematics, the prime-counting function is the function counting the number of prime numbers less than or equal to some real number x. It is denoted by π(x) (unrelated to the number π).
In number theory, the Mertens function is defined for all positive integers n as
In number theory, a superior highly composite number is a natural number which, in a particular rigorous sense, has many divisors. Particularly, it is defined by a ratio between the number of divisors an integer has and that integer raised to some positive power.
In mathematics, the Riemann zeta function is a function in complex analysis, which is also important in number theory. It is often denoted and is named after the mathematician Bernhard Riemann. When the argument is a real number greater than one, the zeta function satisfies the equation It can therefore provide the sum of various convergent infinite series, such as Explicit or numerically efficient formulae exist for at integer arguments, all of which have real values, including this example. This article lists these formulae, together with tables of values. It also includes derivatives and some series composed of the zeta function at integer arguments.
Euclid's theorem is a fundamental statement in number theory that asserts that there are infinitely many prime numbers. It was first proven by Euclid in his work Elements. There are several proofs of the theorem.
In mathematics, the Chebyshev function is either a scalarising function (Tchebycheff function) or one of two related functions. The first Chebyshev functionϑ (x) or θ (x) is given by
In mathematics, a Ramanujan prime is a prime number that satisfies a result proven by Srinivasa Ramanujan relating to the prime-counting function.
In mathematics, the Riemann hypothesis is the conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part 1/2. Many consider it to be the most important unsolved problem in pure mathematics. It is of great interest in number theory because it implies results about the distribution of prime numbers. It was proposed by Bernhard Riemann, after whom it is named.
Anatoly Alexeyevich Karatsuba was a Russian mathematician working in the field of analytic number theory, p-adic numbers and Dirichlet series.
Uniform convergence in probability is a form of convergence in probability in statistical asymptotic theory and probability theory. It means that, under certain conditions, the empirical frequencies of all events in a certain event-family converge to their theoretical probabilities. Uniform convergence in probability has applications to statistics as well as machine learning as part of statistical learning theory.
In mathematics, singular integral operators of convolution type are the singular integral operators that arise on Rn and Tn through convolution by distributions; equivalently they are the singular integral operators that commute with translations. The classical examples in harmonic analysis are the harmonic conjugation operator on the circle, the Hilbert transform on the circle and the real line, the Beurling transform in the complex plane and the Riesz transforms in Euclidean space. The continuity of these operators on L2 is evident because the Fourier transform converts them into multiplication operators. Continuity on Lp spaces was first established by Marcel Riesz. The classical techniques include the use of Poisson integrals, interpolation theory and the Hardy–Littlewood maximal function. For more general operators, fundamental new techniques, introduced by Alberto Calderón and Antoni Zygmund in 1952, were developed by a number of authors to give general criteria for continuity on Lp spaces. This article explains the theory for the classical operators and sketches the subsequent general theory.
In number theory, the prime omega functions and count the number of prime factors of a natural number Thereby counts each distinct prime factor, whereas the related function counts the total number of prime factors of honoring their multiplicity. That is, if we have a prime factorization of of the form for distinct primes , then the respective prime omega functions are given by and . These prime factor counting functions have many important number theoretic relations.