The initial version of a classification system of life by British zoologist Thomas Cavalier-Smith appeared in 1978. [1] [2] This initial system continued to be modified in subsequent versions that were published until he died in 2021. As with classifications of others, such as Carl Linnaeus, Ernst Haeckel, Robert Whittaker, and Carl Woese, Cavalier-Smith's classification attempts to incorporate the latest developments in taxonomy., [3] [4] Cavalier-Smith used his classifications to convey his opinions about the evolutionary relationships among various organisms, principally microbial. His classifications complemented his ideas communicated in scientific publications, talks, and diagrams. Different iterations might have a wider or narrow scope, include different groupings, provide greater or lesser detail, and place groups in different arrangements as his thinking changed. His classifications has been a major influence in the modern taxonomy, particularly of protists. [ citation needed ]
Cavalier-Smith has published extensively on the classification of protists. One of his major contributions to biology was his proposal of a new kingdom of life: the Chromista, although the usefulness of the grouping is questionable given that it is generally agreed to be an arbitrary (polyphyletic) grouping of taxa. He also proposed that all chromista and alveolata share the same common ancestor, a claim later refuted by studies of morphological and molecular evidence by other labs. He named this new group the Chromalveolates. He also proposed and named many other high-rank taxa, like Opisthokonta (1987), Rhizaria (2002), and Excavata (2002), though he himself consistently does not include Opisthonkonta as a formal taxon in his schemes. Together with Chromalveolata, Amoebozoa (he amended their description in 1998), and Archaeplastida (which he called Plantae since 1981) the six formed the basis of the taxonomy of eukaryotes in the middle 2000s. He has also published prodigiously on issues such as the origin of various cellular organelles (including the nucleus, mitochondria), genome size evolution, and endosymbiosis. Though fairly well known, many of his claims have been controversial and have not gained widespread acceptance in the scientific community to date. Most recently, he has published a paper citing the paraphyly of his bacterial kingdom, the origin of Neomura from Actinobacteria and taxonomy of prokaryotes.
According to Palaeos.com:
Prof. Cavalier-Smith of Oxford University has produced a large body of work which is well regarded. Still, he is controversial in a way that is a bit difficult to describe. The issue may be one of writing style. Cavalier-Smith has a tendency to make pronouncements where others would use declarative sentences, to use declarative sentences where others would express an opinion, and to express opinions where angels would fear to tread. In addition, he can sound arrogant, reactionary, and even perverse. On the other [hand], he has a long history of being right when everyone else was wrong. To our way of thinking, all of this is overshadowed by one incomparable virtue: the fact that he will grapple with the details. This makes for very long, very complex papers and causes all manner of dark murmuring, tearing of hair, and gnashing of teeth among those tasked with trying to explain his views of early life. See, [for example], Zrzavý (2001) [5] [and] Patterson (1999). [6] [7] [8] Nevertheless, he deals with all of the relevant facts. [9]
The use of the word "kingdom" to describe a major branch of the living world dates as far back as Linnaeus (1707–1778) who divided the natural world into three kingdoms: animal, vegetable, and mineral. [10] [11] The taxa "animal kingdom" (or kingdom Animalia) and "plant kingdom" (or kingdom Plantae) remain in use by some modern evolutionary biologists. The initial targets of Cavalier-Smith's classification, the protozoa were classified as members of the animal kingdom, [12] and many algae were regarded as part of the plant kingdom. With growing awareness that the animals and plants embraced unrelated taxa, the use of the two kingdom system was rejected by specialists. It remains in use in less critical circles.
By mid-nineteenth century, microscopic organisms were generally classified into four groups:
In 1858, Richard Owen (1804–1892) proposed that the animal phylum Protozoa be elevated to the status of kingdom. [13] In 1860, John Hogg (1800–1869) proposed that protozoa and protophyta be grouped together into a new kingdom which he called "Regnum Primigenum" (kingdom primitive). According to Hogg, this new classification scheme prevented "the unnecessary trouble of contending about their supposed natures, and of uselessly trying to distinguish the Protozoa from the Protophyta". In 1866, Ernst Haeckel (1834–1919) proposed the name "Protista" for the primigenial kingdom and included bacteria in this third kingdom of life. [11] [14] )
By 1959, Robert Whittaker proposed that fungi, which were formerly classified as plants, be given their own kingdom. Therefore, he divided life into four kingdoms such as:
Whittaker subdivided the Protista into two subkingdoms:
Bacteria are fundamentally different from the eukaryotes (plants, animals, fungi, amebas, protozoa, and chromista). Eukaryotes have cell nuclei, bacteria do not. In 1969, Whittaker elevated the bacteria to the status of kingdom. His new classification system divided the living world into five kingdoms:
The kingdom Monera can be divided into two distinct groups: eubacteria (true bacteria) and archaebacteria (archaea). In 1977 Carl Woese and George E. Fox established that archaebacteria (methanogens in their case) were genetically different (based on their ribosomal RNA genes) from bacteria so that life could be divided into three principle lineages, namely:
In 1990, Woese introduced domain above kingdom by creating three-domain system such as:
But Cavalier-Smith considered Archaebacteria as a kingdom. [19]
By 1981, Cavalier-Smith had divided all the eukaryotes into nine kingdoms. [20] In it, he created Chromista for a separate kingdom of some protists. [21]
Most chromists are photosynthetic. This distinguishes them from most other protists which lack photosynthesis. In both plants and chromists photosynthesis takes place in chloroplasts. In plants, however, the chloroplasts are located in the cytosol while in chromists the chloroplasts are located in the lumen of their rough endoplasmic reticulum. This distinguishes chromists from plants. [13]
Based on the addition of Chromista as a kingdom, he suggested that even with his nine kingdoms of eukaryotes, "the best one for general scientific use is a system of seven kingdoms", [20] which includes:
In 1983, Cavalier-Smith adapted the term Archezoa, previously used by Haeckel, Perty, and for protists that lack mitochondria. [22] Initially, the taxon included the quite unrelated metamonads and microscopridia, and expanded to include other unrelated taxa such that the term referred to many different groupings of protists. [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] He originally considered it as a subkingdom, but by 1989, with the establishment of Chromista as separate kingdom, he treated it as a kingdom. [19]
1983a | 1983b | 1987 | 1989 | 1990 | 1991 | 1993 | 1995 | 1996 | 1997 | 1998 | 1999 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Diplomonads | + | + | + | + | + | + | + | + | + | + | + | + |
Retortamonads | + | + | + | + | + | + | + | + | + | + | + | + |
Oxymonads | + | + | + | + | + | + | + | + | + | + | + | + |
Microspora | + | + | + | + | + | + | + | + | + | |||
Hypermastigids | + | + | + | |||||||||
Trichomonads | + | + | + | |||||||||
Mastigamoebids | + | + | + | + | + | + | ||||||
Pelomyxa | + | + | + | + | + | |||||||
Entamoeba | + | + | + | + | + | |||||||
Phreatamoeba | + | + | ||||||||||
Trimastix | + |
Archezoa is now defunct. [40] He now assigns former members of the kingdom Archezoa to the phylum Amoebozoa. [41]
Cavalier-Smith referred to what remained of the protist kingdom, after he removed the kingdoms Archezoa and Chromista, as the "kingdom Protozoa". In 1993, this kingdom contained 18 phyla as summarized in the following table. [13] The first major division relied on the basis of presence or absence of dictyosomes, although a Gogli Apparatus was subsequently demonstrated in the 'Adictyozoa'. [42]
# | Phylum | Assigned to: | Characteristics | Fate |
---|---|---|---|---|
1 | Percolozoa | subkingdom Adictyozoa | lacks Golgi dictyosomes | |
2 | Parabasalia | subkingdom Dictyozoa branch Parabasalia | has Golgi dictyosomes lacks mitochondria | |
3 | Euglenozoa | subkingdom Dictyozoa branch Bikonta infrakingdom Euglenozoa | has Golgi dictyosomes mostly with mitochondria with trans-splicing of | |
4 | Opalozoa (flagellates) | subkingdom Dictyozoa branch Bikonta infrakingdom Neozoa parvkingdom Ciliomyxa superphylum Opalomyxa | has Golgi dictyosomes tubular mitochondrial cristae with cis-spliced introns predominantly ciliated, no cortical alveoli | |
5 | Mycetozoa (slime molds) | subkingdom Dictyozoa branch Bikonta infrakingdom Neozoa parvkingdom Ciliomyxa superphylum Opalomyxa | has Golgi dictyosomes tubular mitochondrial cristae with cis-spliced introns predominantly ciliated, | |
6 | Choanozoa (choanoflagellates) | subkingdom Dictyozoa branch Bikonta infrakingdom Neozoa parvkingdom Ciliomyxa superphylum Choanozoa | has Golgi dictyosomes flattened mitochondrial cristae with cis-spliced introns predominantly ciliated, no cortical alveoli | |
7 | Dinozoa (Dinoflagellata and Protalveolata) | subkingdom Dictyozoa branch Bikonta infrakingdom Neozoa parvkingdom Alveolata superphylum Miozoa | has Golgi dictyosomes tubular mitochondrial cristae with cis-spliced introns with cortical alveoli | Reassigned to Miozoa in Alveolata. [43] |
8 | Apicomplexa | subkingdom Dictyozoa branch Bikonta infrakingdom Neozoa parvkingdom Alveolata superphylum Miozoa | has Golgi dictyosomes tubular mitochondrial cristae with cis-spliced introns with cortical alveoli | Reassigned to Miozoa in Alveolata. [43] |
9 | Ciliophora | subkingdom Dictyozoa branch Bikonta infrakingdom Neozoa parvkingdom Alveolata superphylum Heterokaryota | has Golgi dictyosomes tubular mitochondrial cristae with cis-spliced introns with cortical alveoli | Reassigned to Alveolata. [43] |
10 | Rhizopoda (lobose and filose amoebae) | subkingdom Dictyozoa branch Bikonta infrakingdom Neozoa parvkingdom Neosarcodina | has Golgi dictyosomes usually with tubular cristae with cis-spliced introns | |
11 | Reticulosa (foraminifera; reticulopodial amoebae) | subkingdom Dictyozoa branch Bikonta infrakingdom Neozoa parvkingdom Neosarcodina | has Golgi dictyosomes usually with tubular cristae with cis-spliced introns | |
12 | Heliozoa | subkingdom Dictyozoa branch Bikonta infrakingdom Neozoa parvkingdom Actinopoda | has Golgi dictyosomes mostly with mitochondria with cis-spliced introns has axopodia | |
13 | Radiozoa | subkingdom Dictyozoa branch Bikonta infrakingdom Neozoa parvkingdom Actinopoda | has Golgi dictyosomes mostly with mitochondria with cis-spliced introns has axopodia | |
14 | Entamoebia | subkingdom Dictyozoa branch Bikonta infrakingdom Neozoa parvkingdom Entamoebia | has Golgi dictyosomes with cis-spliced introns no mitochondria, peroxisomes, hydrogenosomes or cilia transient intranuclear centrosomes | |
15 | Myxosporidia | subkingdom Dictyozoa branch Bikonta infrakingdom Neozoa parvkingdom Myxozoa | has Golgi dictyosomes with cis-spliced introns endoparasitic, multicellular spores, mitochondria, and no cilia | Reclassified as animals in 1998. [44] |
16 | Haplosporidia | subkingdom Dictyozoa branch Bikonta infrakingdom Neozoa parvkingdom Myxozoa | has Golgi dictyosomes with cis-spliced introns endoparasitic, multicellular spores, mitochondria, and no cilia | Reclassified as animals in 1998. [44] [ clarification needed ] |
17 | Paramyxia | subkingdom Dictyozoa branch Bikonta infrakingdom Neozoa parvkingdom Myxozoa | has Golgi dictyosomes with cis-spliced introns endoparasitic, multicellular spores, mitochondria, and no cilia | Reclassified as animals in 1998. [44] |
18 | Mesozoa | subkingdom Dictyozoa branch Bikonta infrakingdom Neozoa parvkingdom Mesozoa | has Golgi dictyosomes with cis-spliced introns tubular mitochondrial cristae multicellular with no collagenous connective tissue | Reclassified as animals in 1998. [44] |
The phylum Opalozoa was established by Cavalier-Smith in 1991. [45]
By 1998, Cavalier-Smith had reduced the total number of kingdoms from eight to six: Animalia, Protozoa, Fungi, Plantae (including red and green algae), Chromista, and Bacteria. [44]
Five of Cavalier-Smith's kingdoms are classified as eukaryotes as shown in the following scheme:
Eukaryotes are divided into two major groups: Unikont and Bikont. Uniciliates are cells with only one flagellum and unikonts are descended from uniciliates. Unikont cells often have only one centriole as well. Biciliate cells have two flagella and bikonts are descended from biciliates. Biciliates undergo ciliary transformation by converting a younger anterior flagellum into a dissimilar older posterior flagellum. Animals and fungi are unikonts while plants and chromists are bikonts. Some protozoa are unikonts while others are bikonts.
The Bacteria (= prokaryotes) are subdivided into Eubacteria and Archaebacteria. According to Cavalier-Smith, Eubacteria is the oldest group of terrestrial organisms still living. He classifies the groups which he believes are younger (archaebacteria and eukaryotes) as Neomura.
In 1993, Cavalier-Smith classified Myxozoa as a protozoan parvkingdom. By 1998, he had reclassified it as an animal subkingdom. Myxozoa contains three phyla, Myxosporidia, Haplosporidia, and Paramyxia, which were reclassified as animals along with Myxozoa. Likewise, Cavalier-Smith reclassified the protozoan phylum Mesozoa as an animal subkingdom.
In his 1998 scheme, the animal kingdom was divided into four subkingdoms:
He created five new animal phyla:
and recognized a total of 23 animal phyla, as shown here:
Under Cavalier-Smith's proposed classification system, protozoa share the following traits:
Organisms that do not meet these criteria were reassigned to other kingdoms by Cavalier-Smith.
In 1993, Cavalier-Smith divided the kingdom Protozoa into two subkingdoms and 18 phyla. [13] By 2003 he used phylogenic evidence to revise the total number of proposed phyla down to 11: Amoebozoa, Choanozoa, Cercozoa, Retaria, Loukozoa, Metamonada, Euglenozoa, Percolozoa, Apusozoa, Alveolata, Ciliophora, and Miozoa. [43]
Amoebozoa do not have flagella and are difficult to classify as unikont or bikont based on morphology. In his 1993 classification scheme, Cavalier-Smith incorrectly classified amoebas as bikonts. Gene fusion research later revealed that the clade Amoebozoa, was ancestrally uniciliate. In his 2003 classification scheme, Cavalier-Smith reassigned Amoebozoa to the unikont clade along with animals, fungi, and the protozoan phylum Choanozoa. Plants and all other protists were assigned to the clade Bikont by Cavalier-Smith. [43]
Cavalier-Smith's 2003 classification scheme:
By September 2003, Cavalier-Smith's tree of life looked like this: [46]
In the above tree, the traditional plant, animal, and fungal kingdoms, as well as Cavalier-Smith's proposed kingdom Chromista, are shown as leaves. The leaves Eubacteria and Archaebacteria together make up the kingdom Bacteria. All remaining leaves together make up the kingdom Protozoa.
By 2006, Cavalier-Smith's microbial tree look like this: Cavalier-Smith's Tree of Life, 2006 [cstol 1]
[A] |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Legend:
[A] Gram-negative with a peptidoglycan cell wall like Chlorosome.
[B] Oxygenic Photosynthesis, Omp85 and four new catalases.
[C] Glycobacterial revolution: outer membrane with insertion of lipopolysaccharides, hopanoids, diaminopimelic acid, ToIC and TonB.
[D] Phycobilin chromophores.
[E] Flagella.
[F] Four sections: an amino acid in HSP60 and FtsZ and a domain in RNA polymerases β and σ.
[G] Endospores.
[H] Gram-positive Bacteria: hypertrophy of the wall peptidoglycan, sortase enzyme and a loss of the outer membrane.
[I] Glycerol 1-P dehydrogenase.
[J] Proteasome and phosphatidylinositol.
[K] Neomura revolution: Replacement of peptidoglycan by glycoproteins and lipoproteins.
[L] Reverse DNA gyrase and ether lipid isoprenoids.
[M] Phagocytosis.
By 2010 new data emerged that showed that Unikonts and Bikonts, originally considered to be separate because of an apparently different organization of cilia and cytoskeleton, are in reality more similar than previously thought. As a consequence, Cavalier-Smith revised the above tree and proposed to move its root to reside in between the Excavata and Euglenozoa kingdoms. [47]
In 1987, Cavalier-Smith introduced a classification divided into two superkingdoms (Prokaryota and Eukaryota) and seven kingdoms, two prokaryotic kingdoms (Eubacteria and Archaebacteria) and five eukaryotic kingdoms (Protozoa, Chromista, Fungi, Plantae and Animalia). [48]
Cavalier-Smith and his collaborators revised the classification in 2015, and published it in PLOS ONE . In this scheme they reintroduced the classification with the division of prokaryotes superkingdom into two kingdoms, Bacteria (=Eubacteria) and Archaea (=Archaebacteria). This is based on the consensus in the Taxonomic Outline of Bacteria and Archaea (TOBA) and the Catalogue of Life. [49]
In biology, a kingdom is the second highest taxonomic rank, just below domain. Kingdoms are divided into smaller groups called phyla.
Chromista is a proposed but polyphyletic biological kingdom, refined from the Chromalveolata, consisting of single-celled and multicellular eukaryotic species that share similar features in their photosynthetic organelles (plastids). It includes all eukaryotes whose plastids contain chlorophyll c and are surrounded by four membranes. If the ancestor already possessed chloroplasts derived by endosymbiosis from red algae, all non-photosynthetic Chromista have secondarily lost the ability to photosynthesise. Its members might have arisen independently as separate evolutionary groups from the last eukaryotic common ancestor.
Thomas (Tom) Cavalier-Smith, FRS, FRSC, NERC Professorial Fellow, was a professor of evolutionary biology in the Department of Zoology, at the University of Oxford.
Cercozoa is a phylum of diverse single-celled eukaryotes. They lack shared morphological characteristics at the microscopic level, and are instead united by molecular phylogenies of rRNA and actin or polyubiquitin. They were the first major eukaryotic group to be recognized mainly through molecular phylogenies. They are the natural predators of many species of bacteria. They are closely related to the phylum Retaria, comprising amoeboids that usually have complex shells, and together form a supergroup called Rhizaria.
Amorphea is a taxonomic supergroup that includes the basal Amoebozoa and Obazoa. That latter contains the Opisthokonta, which includes the Fungi, Animals and the Choanomonada, or Choanoflagellates. The taxonomic affinities of the members of this clade were originally described and proposed by Thomas Cavalier-Smith in 2002.
A bikont is any of the eukaryotic organisms classified in the group Bikonta. Many single-celled and multi-celled organisms are members of the group, and these, as well as the presumed ancestor, have two flagella.
Cercomonads are small amoeboflagellates, widespread in aqueous habitats and common in soils.
The Apusozoa are a paraphyletic phylum of flagellate eukaryotes. They are usually around 5–20 μm in size, and occur in soils and aquatic habitats, where they feed on bacteria. They are grouped together based on the presence of an organic shell or theca under the dorsal surface of the cell.
Corticata, in the classification of eukaryotes, is a clade suggested by Thomas Cavalier-Smith to encompass the eukaryote supergroups of the following two groups:
Monera is historically a biological kingdom that is made up of prokaryotes. As such, it is composed of single-celled organisms that lack a nucleus. It has been superseded by the Four-kingdom system.
A protist or protoctist is any eukaryotic organism that is not an animal, land plant, or fungus. Protists do not form a natural group, or clade, but are a polyphyletic grouping of several independent clades that evolved from the last eukaryotic common ancestor.
Protozoa are a polyphyletic group of single-celled eukaryotes, either free-living or parasitic, that feed on organic matter such as other microorganisms or organic debris. Historically, protozoans were regarded as "one-celled animals".
In biology, a phylum is a level of classification or taxonomic rank below kingdom and above class. Traditionally, in botany the term division has been used instead of phylum, although the International Code of Nomenclature for algae, fungi, and plants accepts the terms as equivalent. Depending on definitions, the animal kingdom Animalia contains about 31 phyla, the plant kingdom Plantae contains about 14 phyla, and the fungus kingdom Fungi contains about 8 phyla. Current research in phylogenetics is uncovering the relationships among phyla within larger clades like Ecdysozoa and Embryophyta.
The sarcomonads or class Sarcomonadea are a group of amoeboid biciliate protists in the phylum Cercozoa. They are characterized by a propensity to move through gliding on their posterior cilium or through filopodia, a lack of scales or external theca, a soft cell surface without obvious cortical filamentous or membranous skeleton, two cilia without scales or hairs, tubular mitochondrial cristae, near-spherical extrusomes, and a microbody attached to the nucleus.
Diaphoretickes is a major group of eukaryotic organisms, with over 400,000 species. The majority of the earth's biomass that carries out photosynthesis belongs to Diaphoretickes.
Marine botany is the study of flowering vascular plant species and marine algae that live in shallow seawater of the open ocean and the littoral zone, along shorelines of the intertidal zone and coastal wetlands, even in low-salinity brackish water of estuaries.
Podiates are a proposed clade containing the Amorphea and the organisms now assigned to the clade CRuMs. Ancyromonadida does not appear to have emerged in this grouping. Sarcomastigota is a proposed subkingdom that includes all the podiates that are not animals or fungi. Sulcozoa is a proposed phylum within Sarcomastigota that does not include the phyla Amoebozoa (clade) and Choanozoa (paraphyletic), i.e. it includes the proposed subphyla Apusozoa and Varisulca
The Orthokaryotes are a proposed Eukaryote clade consisting of the Jakobea and the Neokaryotes. Together with its sister Discicristata it forms a basal Eukaryote clade. They are characterized by stacked Golgi, orthogonal centrioles, and two opposite posterior ciliary roots.
The neokaryotes are a proposed eukaryote clade consisting of the unikonts and the bikonts as sister of for instance the Jakobea. It arises because the Euglenozoa, Percolozoa, Tsukubea, and Jakobea are seen in this view as more basal eukaryotes. These four groups, are traditionally grouped together in the Discoba. However, the Discoba may well be paraphyletic as the neokaryotes may have emerged in them.
The Scotokaryotes (Cavalier-Smith) is a proposed basal Neokaryote clade as sister of the Diaphoretickes. Basal Scotokaryote groupings are the Metamonads, the Malawimonas and the Podiata. In this phylogeny the Discoba are sometimes seen as paraphyletic and basal Eukaryotes.
Robert Whittaker (1969) five kingdoms.