Chinese Deep Space Network | |
---|---|
Active | 1993 |
Country | People's Republic of China |
Allegiance | Chinese Communist Party |
Branch | People's Liberation Army Strategic Support Force |
Part of | People's Liberation Army |
The Chinese Deep Space Network (CDSN) is a network of large antennas and communication facilities that are used for radio astronomy, radar observations, and spacecraft missions of China. The CDSN is managed by the China Satellite Launch and Tracking Control Center General (CLTC) of the People's Liberation Army Strategic Support Force Space Systems Department. [1] [2] [3] [4]
The network was first needed for the lunar mission Chang'e 1, [5] [6] and since has been used to support subsequent missions to the Moon and Mars such as Chang'e 5, and Tianwen-1 missions. Similar deep space networks are run by the United States, Russia, European countries, Japan, and India.
In principle, a Chinese deep space network has existed since 1993 with the commissioning of the Nanshan 25-meter telescope in the mountains south of Ürümqi. The 25-meter antenna of the Shanghai Astronomical Observatory was then not only able to participate in the Southern Hemisphere VLBI Experiment program, but also to form its own Chinese baseline together with Ürümqi and observe and measure distant objects.[ citation needed ]
All stations are equipped with high-precision hydrogen maser clocks and connected via powerful communication networks. All stations comply with the provisions of the Consultative Committee for Space Data Systems (CCSDS), so data exchange with the systems of other space agencies is possible despite different technical equipment.[ citation needed ]
The antennas of Sheshan, Ürümqi, Miyun, Kunming and Tianma can be interconnected to form a national association and in this way form the Chinese VLBI Network (CVN), a VLBI telescope the size of China. The evaluation of the data from the CVN takes place in the VLBI observation base Sheshan of the Shanghai Astronomical Observatory. The facilities in Shanghai and Ürümqi are also integrated into the European VLBI Network (EVN).[ citation needed ]
In 2007, the network consisted of:
In 2012, improvements were made to support Chang'e 3 and Chang'e 4 Moon missions, including: [7]
In 2014, China and Argentina signed an agreement allowing China to construct the Espacio Lejano Station. [1] [8] The station was built in Neuquén Province, Argentina (~70°W), with a 50 million-dollar investment. The facility was inaugurated in October 2017. [9] The station is seen by some as a symbol of China's increased role in South America's politics and economy. [10]
Since 2018, China Satellite Launch and Tracking Control General (CLTC) was a customer of the Swedish Space Corporation (SSC), which provided CLTC services, including TT&C for pre-defined civilian satellites within research, Earth observation and weather data as well as for other scientific spacecraft. [11] It was reported by Reuters on 21 September 2020 that SSC decided not to renew its contracts with China to help operate Chinese satellites from SSC's ground stations, or seek new business with China. [12]
In late 2020, the Kashgar ground station was upgraded from one single 35-meter antenna to an antenna array consisting of four 35-meter antennas. The capacity of the new system was equivalent to a 66-meter antenna. [13]
Radio astronomy, despite using similar large antennas, is a very different field than spacecraft communication. There is no need to transmit, and the receiving bands are chosen for scientific interest.
China has several relay satellites of the Tianlian series in geostationary orbits, which can relay data to each other and to the ground, thus enabling communication with spacecraft that have no direct contact with ground stations. The technology of the relay satellites enables intermediate storage of data, a higher bandwidth of data connections, and greater sky coverage. These satellites were originally placed in orbit in 2008 for communication with the Shenzhou spacecraft of the crewed space program. But they are also used for deep-space missions, for example in 2020 for the Mars mission Tianwen-1, where the satellites Tianlian 1B and Tianlian 2A were parked for orbit tracking and the transmission of telemetry data from the probe. [26] [ better source needed ]
Very-long-baseline interferometry (VLBI) is a type of astronomical interferometry used in radio astronomy. In VLBI a signal from an astronomical radio source, such as a quasar, is collected at multiple radio telescopes on Earth or in space. The distance between the radio telescopes is then calculated using the time difference between the arrivals of the radio signal at different telescopes. This allows observations of an object that are made simultaneously by many radio telescopes to be combined, emulating a telescope with a size equal to the maximum separation between the telescopes.
The NASA Deep Space Network (DSN) is a worldwide network of spacecraft communication ground segment facilities, located in the United States (California), Spain (Madrid), and Australia (Canberra), that supports NASA's interplanetary spacecraft missions. It also performs radio and radar astronomy observations for the exploration of the Solar System and the universe, and supports selected Earth-orbiting missions. DSN is part of the NASA Jet Propulsion Laboratory (JPL).
The space program of the People's Republic of China is about the activities in outer space conducted and directed by the People's Republic of China. The roots of the Chinese space program trace back to the 1950s, when, with the help of the newly allied Soviet Union, China began development of its first ballistic missile and rocket programs in response to the perceived American threats. Driven by the successes of Soviet Sputnik 1 and American Explorer 1 satellite launches in 1957 and 1958 respectively, China would launch its first satellite, Dong Fang Hong 1 in April 1970 aboard a Long March 1 rocket, making it the fifth nation to place a satellite in orbit.
The Goldstone Deep Space Communications Complex (GDSCC), commonly called the Goldstone Observatory, is a satellite ground station located in Fort Irwin in the U.S. state of California. Operated by NASA's Jet Propulsion Laboratory (JPL), its main purpose is to track and communicate with interplanetary space missions. It is named after Goldstone, California, a nearby gold-mining ghost town.
The Japan Aerospace Exploration Agency (JAXA) is the Japanese national air and space agency. Through the merger of three previously independent organizations, JAXA was formed on 1 October 2003. JAXA is responsible for research, technology development and launch of satellites into orbit, and is involved in many more advanced missions such as asteroid exploration and possible human exploration of the Moon. Its motto is One JAXA and its corporate slogan is Explore to Realize.
HALCA, also known for its project name VSOP, the code name MUSES-B, or just Haruka was a Japanese 8 meter diameter radio telescope satellite which was used for Very Long Baseline Interferometry (VLBI). It was the first such space-borne dedicated VLBI mission.
The Hartebeesthoek Radio Astronomy Observatory (HartRAO) is a radio astronomy observatory, located in a natural bowl of hills at Hartebeesthoek just south of the Magaliesberg mountain range, and about 50 km west of Johannesburg, Gauteng, South Africa. It is a National Research Facility run by South Africa's National Research Foundation. HartRAO was the only major radio astronomy observatory in Africa until the construction of the KAT-7 test bed for the future MeerKAT array in the Meerkat National Park.
The Chinese Lunar Exploration Program, also known as the Chang'e Project after the Chinese Moon goddess Chang'e, is an ongoing series of robotic Moon missions by the China National Space Administration (CNSA).
The Wenchang Space Launch Site is a rocket launch site located in Wenchang on the island of Hainan, in China.
The following outline is provided as an overview of and topical guide to space exploration.
Shanghai Astronomical Observatory (SHAO) is an astronomical observatory in Shanghai. It has a long history of astrometry and also operates the 25-meter (82 ft) Sheshan radio telescope as part of the Chinese VLBI array and the European VLBI Network (EVN).
The Soviet Deep Space Network is a network of large antennas and communication facilities that support interplanetary spacecraft missions, and radio and radar astronomy observations for the exploration of the Solar System and the universe during Soviet times. It was built to support the space missions of the Soviet Union. Similar networks are run by the USA, China, Europe, Japan, and India.
Tianwen-1 Chinese: 天问一号 is an interplanetary mission by the China National Space Administration (CNSA) which sent a robotic spacecraft to Mars, consisting of 6 spacecraft: an orbiter, two deployable cameras, lander, remote camera, and the Zhurong rover. The spacecraft, with a total mass of nearly five tons, is one of the heaviest probes launched to Mars and carries 14 scientific instruments. It is the first in a series of planned missions undertaken by CNSA as part of its Planetary Exploration of China program.
This article documents expected notable spaceflight events during the 2020s.
Tianwen-4, formerly known as Gan De, is a planned Chinese interplanetary mission to study the Jovian system, possibly sharing a launch with a spacecraft which will make a flyby of Uranus.
The Planetary Exploration of China, also known as Tianwen, is the robotic interplanetary spaceflight program conducted by the China National Space Administration (CNSA). The program aims to explore planets of the Solar System, starting from Mars, and will be expanded to Jupiter and more in the future.
Queqiao relay satellite (Chinese: 鹊桥号中继卫星; pinyin: Quèqiáo hào zhōngjì wèixīng; lit. 'Magpie Bridge relay satellite'), is the first of the pair of communications relay and radio astronomy satellites for the Chinese Lunar Exploration Program. The China National Space Administration (CNSA) launched the Queqiao relay satellite on 20 May 2018 to a halo orbit around the Earth–Moon L2 Lagrangian point Queqiao is the first communication relay and radio astronomy satellite at this location.
Queqiao-2 relay satellite, is the second of the communications relay and radio astronomy satellites designed to support the fourth phase the Chinese Lunar Exploration Program, after Queqiao-1 launched in 2018. The China National Space Administration (CNSA) launched the Queqiao-2 relay satellite on 20 March 2024 to an elliptical frozen orbit around the Moon to support communications from the far side of the Moon and the Lunar south pole.