Covariant transformation

Last updated

In physics, a covariant transformation is a rule that specifies how certain entities, such as vectors or tensors, change under a change of basis. The transformation that describes the new basis vectors as a linear combination of the old basis vectors is defined as a covariant transformation. Conventionally, indices identifying the basis vectors are placed as lower indices and so are all entities that transform in the same way. The inverse of a covariant transformation is a contravariant transformation. Whenever a vector should be invariant under a change of basis, that is to say it should represent the same geometrical or physical object having the same magnitude and direction as before, its components must transform according to the contravariant rule. Conventionally, indices identifying the components of a vector are placed as upper indices and so are all indices of entities that transform in the same way. The sum over pairwise matching indices of a product with the same lower and upper indices is invariant under a transformation.

Contents

A vector itself is a geometrical quantity, in principle, independent (invariant) of the chosen basis. A vector v is given, say, in components vi on a chosen basis ei. On another basis, say ej, the same vector v has different components vj and As a vector, v should be invariant to the chosen coordinate system and independent of any chosen basis, i.e. its "real world" direction and magnitude should appear the same regardless of the basis vectors. If we perform a change of basis by transforming the vectors ei into the basis vectors ej, we must also ensure that the components vi transform into the new components vj to compensate.

The needed transformation of v is called the contravariant transformation rule.

In the shown example, a vector is described by two different coordinate systems: a rectangular coordinate system (the black grid), and a radial coordinate system (the red grid). Basis vectors have been chosen for both coordinate systems: ex and ey for the rectangular coordinate system, and er and eφ for the radial coordinate system. The radial basis vectors er and eφ appear rotated anticlockwise with respect to the rectangular basis vectors ex and ey. The covariant transformation, performed to the basis vectors, is thus an anticlockwise rotation, rotating from the first basis vectors to the second basis vectors.

The coordinates of v must be transformed into the new coordinate system, but the vector v itself, as a mathematical object, remains independent of the basis chosen, appearing to point in the same direction and with the same magnitude, invariant to the change of coordinates. The contravariant transformation ensures this, by compensating for the rotation between the different bases. If we view v from the context of the radial coordinate system, it appears to be rotated more clockwise from the basis vectors er and eφ. compared to how it appeared relative to the rectangular basis vectors ex and ey. Thus, the needed contravariant transformation to v in this example is a clockwise rotation.

Examples of covariant transformation

The derivative of a function transforms covariantly

The explicit form of a covariant transformation is best introduced with the transformation properties of the derivative of a function. Consider a scalar function f (like the temperature at a location in a space) defined on a set of points p, identifiable in a given coordinate system (such a collection is called a manifold). If we adopt a new coordinates system then for each i, the original coordinate can be expressed as a function of the new coordinates, so One can express the derivative of f in old coordinates in terms of the new coordinates, using the chain rule of the derivative, as

This is the explicit form of the covariant transformation rule. The notation of a normal derivative with respect to the coordinates sometimes uses a comma, as follows

where the index i is placed as a lower index, because of the covariant transformation.

Basis vectors transform covariantly

A vector can be expressed in terms of basis vectors. For a certain coordinate system, we can choose the vectors tangent to the coordinate grid. This basis is called the coordinate basis.

To illustrate the transformation properties, consider again the set of points p, identifiable in a given coordinate system where (manifold). A scalar function f, that assigns a real number to every point p in this space, is a function of the coordinates . A curve is a one-parameter collection of points c, say with curve parameter λ, c(λ). A tangent vector v to the curve is the derivative along the curve with the derivative taken at the point p under consideration. Note that we can see the tangent vector v as an operator (the directional derivative ) which can be applied to a function

The parallel between the tangent vector and the operator can also be worked out in coordinates

or in terms of operators

where we have written , the tangent vectors to the curves which are simply the coordinate grid itself.

If we adopt a new coordinates system then for each i, the old coordinate can be expressed as function of the new system, so Let be the basis, tangent vectors in this new coordinates system. We can express in the new system by applying the chain rule on x. As a function of coordinates we find the following transformation

which indeed is the same as the covariant transformation for the derivative of a function.

Contravariant transformation

The components of a (tangent) vector transform in a different way, called contravariant transformation. Consider a tangent vector v and call its components on a basis . On another basis we call the components , so

in which

If we express the new components in terms of the old ones, then

This is the explicit form of a transformation called the contravariant transformation and we note that it is different and just the inverse of the covariant rule. In order to distinguish them from the covariant (tangent) vectors, the index is placed on top.

Basis differential forms transform contravariantly

An example of a contravariant transformation is given by a differential form df. For f as a function of coordinates , df can be expressed in terms of the basis . The differentials dx transform according to the contravariant rule since

Dual properties

Entities that transform covariantly (like basis vectors) and the ones that transform contravariantly (like components of a vector and differential forms) are "almost the same" and yet they are different. They have "dual" properties. What is behind this, is mathematically known as the dual space that always goes together with a given linear vector space.

Take any vector space T. A function f on T is called linear if, for any vectors v, w and scalar α:

A simple example is the function which assigns a vector the value of one of its components (called a projection function). It has a vector as argument and assigns a real number, the value of a component.

All such scalar-valued linear functions together form a vector space, called the dual space of T. The sum f+g is again a linear function for linear f and g, and the same holds for scalar multiplication αf.

Given a basis for T, we can define a basis, called the dual basis for the dual space in a natural way by taking the set of linear functions mentioned above: the projection functions. Each projection function (indexed by ω) produces the number 1 when applied to one of the basis vectors . For example, gives a 1 on and zero elsewhere. Applying this linear function to a vector , gives (using its linearity)

so just the value of the first coordinate. For this reason it is called the projection function.

There are as many dual basis vectors as there are basis vectors , so the dual space has the same dimension as the linear space itself. It is "almost the same space", except that the elements of the dual space (called dual vectors) transform covariantly and the elements of the tangent vector space transform contravariantly.

Sometimes an extra notation is introduced where the real value of a linear function σ on a tangent vector u is given as

where is a real number. This notation emphasizes the bilinear character of the form. It is linear in σ since that is a linear function and it is linear in u since that is an element of a vector space.

Co- and contravariant tensor components

Without coordinates

A tensor of type (r, s) may be defined as a real-valued multilinear function of r dual vectors and s vectors. Since vectors and dual vectors may be defined without dependence on a coordinate system, a tensor defined in this way is independent of the choice of a coordinate system.

The notation of a tensor is

for dual vectors (differential forms) ρ, σ and tangent vectors . In the second notation the distinction between vectors and differential forms is more obvious.

With coordinates

Because a tensor depends linearly on its arguments, it is completely determined if one knows the values on a basis and

The numbers are called the components of the tensor on the chosen basis.

If we choose another basis (which are a linear combination of the original basis), we can use the linear properties of the tensor and we will find that the tensor components in the upper indices transform as dual vectors (so contravariant), whereas the lower indices will transform as the basis of tangent vectors and are thus covariant. For a tensor of rank 2, we can verify that

covariant tensor
contravariant tensor

For a mixed co- and contravariant tensor of rank 2

mixed co- and contravariant tensor

See also

Related Research Articles

<span class="mw-page-title-main">Divergence</span> Vector operator in vector calculus

In vector calculus, divergence is a vector operator that operates on a vector field, producing a scalar field giving the quantity of the vector field's source at each point. More technically, the divergence represents the volume density of the outward flux of a vector field from an infinitesimal volume around a given point.

In mathematics, specifically category theory, a functor is a mapping between categories. Functors were first considered in algebraic topology, where algebraic objects are associated to topological spaces, and maps between these algebraic objects are associated to continuous maps between spaces. Nowadays, functors are used throughout modern mathematics to relate various categories. Thus, functors are important in all areas within mathematics to which category theory is applied.

<span class="mw-page-title-main">Gradient</span> Multivariate derivative (mathematics)

In vector calculus, the gradient of a scalar-valued differentiable function of several variables is the vector field whose value at a point gives the direction and the rate of fastest increase. The gradient transforms like a vector under change of basis of the space of variables of . If the gradient of a function is non-zero at a point , the direction of the gradient is the direction in which the function increases most quickly from , and the magnitude of the gradient is the rate of increase in that direction, the greatest absolute directional derivative. Further, a point where the gradient is the zero vector is known as a stationary point. The gradient thus plays a fundamental role in optimization theory, where it is used to minimize a function by gradient descent. In coordinate-free terms, the gradient of a function may be defined by:

<span class="mw-page-title-main">Tensor</span> Algebraic object with geometric applications

In mathematics, a tensor is an algebraic object that describes a multilinear relationship between sets of algebraic objects related to a vector space. Tensors may map between different objects such as vectors, scalars, and even other tensors. There are many types of tensors, including scalars and vectors, dual vectors, multilinear maps between vector spaces, and even some operations such as the dot product. Tensors are defined independent of any basis, although they are often referred to by their components in a basis related to a particular coordinate system; those components form an array, which can be thought of as a high-dimensional matrix.

In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-1/2 massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity, and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine structure of the hydrogen spectrum in a completely rigorous way. It has become vital in the building of the Standard Model.

In the mathematical field of differential geometry, a metric tensor is an additional structure on a manifold M that allows defining distances and angles, just as the inner product on a Euclidean space allows defining distances and angles there. More precisely, a metric tensor at a point p of M is a bilinear form defined on the tangent space at p, and a metric field on M consists of a metric tensor at each point p of M that varies smoothly with p.

<span class="mw-page-title-main">Covariance and contravariance of vectors</span> Vector behavior under coordinate changes

In physics, especially in multilinear algebra and tensor analysis, covariance and contravariance describe how the quantitative description of certain geometric or physical entities changes with a change of basis. Briefly, a contravariant vector is a list of numbers that transforms oppositely to a change of basis, and a covariant vector is a list of numbers that transforms in the same way. Contravariant vectors are often just called vectors and covariant vectors are called covectors or dual vectors. The terms covariant and contravariant were introduced by James Joseph Sylvester in 1851.

In mathematics, differential forms provide a unified approach to define integrands over curves, surfaces, solids, and higher-dimensional manifolds. The modern notion of differential forms was pioneered by Élie Cartan. It has many applications, especially in geometry, topology and physics.

<span class="mw-page-title-main">Four-vector</span> 4-dimensional vector in relativity

In special relativity, a four-vector is an object with four components, which transform in a specific way under Lorentz transformations. Specifically, a four-vector is an element of a four-dimensional vector space considered as a representation space of the standard representation of the Lorentz group, the representation. It differs from a Euclidean vector in how its magnitude is determined. The transformations that preserve this magnitude are the Lorentz transformations, which include spatial rotations and boosts.

<span class="mw-page-title-main">Minkowski space</span> Spacetime used in theory of relativity

In physics, Minkowski space is the main mathematical description of spacetime in the absence of gravitation. It combines inertial space and time manifolds into a four-dimensional model.

In mathematics and physics, a tensor field is a function assigning a tensor to each point of a region of a mathematical space or of the physical space. Tensor fields are used in differential geometry, algebraic geometry, general relativity, in the analysis of stress and strain in material object, and in numerous applications in the physical sciences. As a tensor is a generalization of a scalar and a vector, a tensor field is a generalization of a scalar field and a vector field that assigns, respectively, a scalar or vector to each point of space. If a tensor A is defined on a vector fields set X(M) over a module M, we call A a tensor field on M. Many mathematical structures called "tensors" are also tensor fields. For example, the Riemann curvature tensor is a tensor field as it associates a tensor to each point of a Riemannian manifold, which is a topological space.

In differential geometry, the Lie derivative, named after Sophus Lie by Władysław Ślebodziński, evaluates the change of a tensor field, along the flow defined by another vector field. This change is coordinate invariant and therefore the Lie derivative is defined on any differentiable manifold.

In mathematics, the Hodge star operator or Hodge star is a linear map defined on the exterior algebra of a finite-dimensional oriented vector space endowed with a nondegenerate symmetric bilinear form. Applying the operator to an element of the algebra produces the Hodge dual of the element. This map was introduced by W. V. D. Hodge.

In mathematics, the covariant derivative is a way of specifying a derivative along tangent vectors of a manifold. Alternatively, the covariant derivative is a way of introducing and working with a connection on a manifold by means of a differential operator, to be contrasted with the approach given by a principal connection on the frame bundle – see affine connection. In the special case of a manifold isometrically embedded into a higher-dimensional Euclidean space, the covariant derivative can be viewed as the orthogonal projection of the Euclidean directional derivative onto the manifold's tangent space. In this case the Euclidean derivative is broken into two parts, the extrinsic normal component and the intrinsic covariant derivative component.

<span class="mw-page-title-main">Curvilinear coordinates</span> Coordinate system whose directions vary in space

In geometry, curvilinear coordinates are a coordinate system for Euclidean space in which the coordinate lines may be curved. These coordinates may be derived from a set of Cartesian coordinates by using a transformation that is locally invertible at each point. This means that one can convert a point given in a Cartesian coordinate system to its curvilinear coordinates and back. The name curvilinear coordinates, coined by the French mathematician Lamé, derives from the fact that the coordinate surfaces of the curvilinear systems are curved.

In mathematics and physics, the Christoffel symbols are an array of numbers describing a metric connection. The metric connection is a specialization of the affine connection to surfaces or other manifolds endowed with a metric, allowing distances to be measured on that surface. In differential geometry, an affine connection can be defined without reference to a metric, and many additional concepts follow: parallel transport, covariant derivatives, geodesics, etc. also do not require the concept of a metric. However, when a metric is available, these concepts can be directly tied to the "shape" of the manifold itself; that shape is determined by how the tangent space is attached to the cotangent space by the metric tensor. Abstractly, one would say that the manifold has an associated (orthonormal) frame bundle, with each "frame" being a possible choice of a coordinate frame. An invariant metric implies that the structure group of the frame bundle is the orthogonal group O(p, q). As a result, such a manifold is necessarily a (pseudo-)Riemannian manifold. The Christoffel symbols provide a concrete representation of the connection of (pseudo-)Riemannian geometry in terms of coordinates on the manifold. Additional concepts, such as parallel transport, geodesics, etc. can then be expressed in terms of Christoffel symbols.

In differential geometry, a tensor density or relative tensor is a generalization of the tensor field concept. A tensor density transforms as a tensor field when passing from one coordinate system to another, except that it is additionally multiplied or weighted by a power W of the Jacobian determinant of the coordinate transition function or its absolute value. A tensor density with a single index is called a vector density. A distinction is made among (authentic) tensor densities, pseudotensor densities, even tensor densities and odd tensor densities. Sometimes tensor densities with a negative weight W are called tensor capacity. A tensor density can also be regarded as a section of the tensor product of a tensor bundle with a density bundle.

In general relativity, the metric tensor is the fundamental object of study. The metric captures all the geometric and causal structure of spacetime, being used to define notions such as time, distance, volume, curvature, angle, and separation of the future and the past.

In physics, the gauge covariant derivative is a means of expressing how fields vary from place to place, in a way that respects how the coordinate systems used to describe a physical phenomenon can themselves change from place to place. The gauge covariant derivative is used in many areas of physics, including quantum field theory and fluid dynamics and in a very special way general relativity.

<span class="mw-page-title-main">Mathematical descriptions of the electromagnetic field</span> Formulations of electromagnetism

There are various mathematical descriptions of the electromagnetic field that are used in the study of electromagnetism, one of the four fundamental interactions of nature. In this article, several approaches are discussed, although the equations are in terms of electric and magnetic fields, potentials, and charges with currents, generally speaking.