This article includes a list of general references, but it lacks sufficient corresponding inline citations .(October 2016) |
The Earth System Modeling Framework (ESMF) is open-source software for building climate, numerical weather prediction, data assimilation, and other Earth science software applications. These applications are computationally demanding and usually run on supercomputers. The ESMF is considered a technical layer, integrated into a sophisticated common modeling infrastructure for interoperability. Other aspects of interoperability and shared infrastructure include: common experimental protocols, common analytic methods, common documentation standards for data and data provenance, shared workflow, and shared model components. [1]
The ESMF project is distinguished by its strong emphasis on community governance and distributed development, and by a diverse customer base that includes modeling groups from universities, major U.S. research centers, the National Weather Service, the Department of Defense, and NASA. The ESMF development team was centered at NCAR until 2009, after which it moved to the NOAA Earth System Research Laboratories.
Editing Earth System Modeling Framework is free software released under the University of Illinois/NCSA Open Source License.
ESMF increases the interoperability of Earth-science modeling software developed at different sites and promotes code reuse. The idea is to transform distributed, specialized knowledge and resources into a collaborative, integrated modeling community that operates more efficiently, can address a wider variety of problems more effectively, and is more responsive to societal needs.
ESMF is based on principles of component-based software engineering. The components within an ESMF software application usually represent large-scale physical domains such as the atmosphere, ocean, cryosphere, or land surface. Some models also represent specific processes (e.g. ocean biogeochemistry, the impact of solar radiation on the atmosphere) as components. In ESMF, components can create and drive other components so that an ocean biogeochemistry component can be part of a larger ocean component.
The software that connects physical domains is called a coupler in the Earth system modeling community. Couplers follow the mediator pattern and take the outputs from one component and transform them into the inputs that are needed to run another component. Transformations may include unit conversions, grid interpolation or remapping, mergers (i.e., combining land and ocean surfaces to form a completely covered global surface) or other specialized transformations. In ESMF, couplers are also software components.
ESMF represents user data in the form of data objects such as grids, fields, and arrays. The user data within a component may be copied or referenced into these ESMF objects. Once user data is part of an ESMF data object, framework methods can be used to transform and transfer the data as required to other components in the system. This generally happens within a coupler component.
Grid interpolation and remapping are core utilities of ESMF. Interpolation weights can be generated in ESMF using bilinear interpolation, finite element patch recovery, and conservative remapping methods.
ESMF can associate metadata with data objects. The metadata, in the form of name and value pairs, is grouped into packages, which can be written out in XML and other standard formats. ESMF metadata packages are based on community conventions including the Climate and Forecast Metadata Conventions and the METAFOR Common Information Model.
The ESMF collaboration had its roots in the Common Modeling Infrastructure Working Group (CMIWG), an unfunded, grass-roots effort to explore ways of enhancing collaborative Earth system model development. The CMIWG attracted broad participation from major weather and climate modeling groups at research and operational centers. In a series of meetings held from 1998 to 2000, CMIWG members established general requirements and a preliminary design for a common software framework.
In September 2000, the NASA Earth Science Technology Office (ESTO) released a solicitation that called for the creation of an ESMF. A critical mass of CMIWG participants agreed to develop a coordinated response, based on their strawman framework design, and submitted three linked proposals. The first focused on development of the core ESMF software, the second on deployment of Earth science modeling applications, and the third on deployment of ESMF data assimilation applications. All three proposals were funded, at a collective level of $9.8 million over a three-year period. As the ESMF project gained momentum, it replaced the CMIWG as the focal point for developing community modeling infrastructure.
During the period of NASA funding, the ESMF team developed a prototype of the framework and used it in a number of experiments that demonstrated coupling of modeling components from different institutions. ESMF was also used as the basis for the construction of a new model, the Goddard Earth Observing System (GEOS) atmospheric general circulation model at NASA Goddard.
As the end of the first funding cycle for ESMF neared, its collaborators wrote a project plan that described how ESMF could transition to an organization with multi-agency sponsorship for its next funding cycle. Major new five-year grants came from NASA, through the Modeling Analysis and Prediction (MAP) program for climate change and variability, and from the Department of Defense Battlespace Environments Institute. The National Science Foundation (NSF) continued funding part of the development team through NCAR core funds. Many smaller ESMF-based application adoption projects were funded in domains as diverse as space weather and sediment transport.
Also at the end of the first funding cycle, the ESMF collaborators wrote a white paper on future directions for the ESMF. This paper formed the basis for a proposal to NSF to combine ESMF (and other software frameworks) with data services to create a computational environment that supports an end-to-end modeling workflow.
In 2008, a project manager was appointed for the National Unified Operational Prediction Capability (NUOPC), a joint project for weather prediction of the United States Navy, the National Weather Service, and the United States Air Force. [2]
A general circulation model (GCM) is a type of climate model. It employs a mathematical model of the general circulation of a planetary atmosphere or ocean. It uses the Navier–Stokes equations on a rotating sphere with thermodynamic terms for various energy sources. These equations are the basis for computer programs used to simulate the Earth's atmosphere or oceans. Atmospheric and oceanic GCMs are key components along with sea ice and land-surface components.
The Earth Observing System (EOS) is a program of NASA comprising a series of artificial satellite missions and scientific instruments in Earth orbit designed for long-term global observations of the land surface, biosphere, atmosphere, and oceans. Since the early 1970s, NASA has been developing its Earth Observing System, launching a series of Landsat satellites in the decade. Some of the first included passive microwave imaging in 1972 through the Nimbus 5 satellite. Following the launch of various satellite missions, the conception of the program began in the late 1980s and expanded rapidly through the 1990s. Since the inception of the program, it has continued to develop, including; land, sea, radiation and atmosphere. Collected in a system known as EOSDIS, NASA uses this data in order to study the progression and changes in the biosphere of Earth. The main focus of this data collection surrounds climatic science. The program is the centrepiece of NASA's Earth Science Enterprise.
The Community Climate System Model (CCSM) is a coupled general circulation model (GCM) developed by the University Corporation for Atmospheric Research (UCAR) with funding from the National Science Foundation (NSF), the Department of Energy (DoE), and the National Aeronautics and Space Administration (NASA). The coupled components include an atmospheric model, a land-surface model, an ocean model, and a sea ice model. CCSM is maintained by the National Center for Atmospheric Research (NCAR).
The Cooperative Institute for Research in Environmental Sciences (CIRES) is a research institute that is sponsored jointly by the National Oceanic and Atmospheric Administration (NOAA) Office of Oceanic and Atmospheric Research (OAR) and the University of Colorado Boulder (CU). CIRES scientists study the Earth system, including the atmosphere, hydrosphere, cryosphere, biosphere, and geosphere, and communicate these findings to decision makers, the scientific community, and the public.
Fedora is a digital asset management (DAM) content repository architecture upon which institutional repositories, digital archives, and digital library systems might be built. Fedora is the underlying architecture for a digital repository, and is not a complete management, indexing, discovery, and delivery application. It is a modular architecture built on the principle that interoperability and extensibility are best achieved by the integration of data, interfaces, and mechanisms as clearly defined modules.
Isearch is open-source text retrieval software first developed in 1994 by Nassib Nassar as part of the Isite Z39.50 information framework. The project started at the Clearinghouse for Networked Information Discovery and Retrieval (CNIDR) of the North Carolina supercomputing center MCNC and funded by the National Science Foundation to follow in the track of WAIS and develop prototype systems for distributed information networks encompassing Internet applications, library catalogs and other information resources.
The Earth Observing System Data and Information System (EOSDIS) is a key core capability in NASA's Earth Science Data Systems Program. Designed and maintained by Raytheon Intelligence & Space, it is a comprehensive data and information system designed to perform a wide variety of functions in support of a heterogeneous national and international user community.
Digital Earth is the name given to a concept by former US vice president Al Gore in 1998, describing a virtual representation of the Earth that is georeferenced and connected to the world's digital knowledge archives.
Geospatial metadata is a type of metadata applicable to geographic data and information. Such objects may be stored in a geographic information system (GIS) or may simply be documents, data-sets, images or other objects, services, or related items that exist in some other native environment but whose features may be appropriate to describe in a (geographic) metadata catalog.
Computational geophysics is the field of study that uses any type of numerical computations to generate and analyze models of complex geophysical systems. It can be considered an extension, or sub-field, of both computational physics and geophysics. In recent years, computational power, data availability, and modelling capabilities have all improved exponentially, making computational geophysics a more populated discipline. Due to the large computational size of many geophysical problems, high-performance computing can be required to handle analysis. Modeling applications of computational geophysics include atmospheric modelling, oceanic modelling, general circulation models, and geological modelling. In addition to modelling, some problems in remote sensing fall within the scope of computational geophysics such as tomography, inverse problems, and 3D reconstruction.
The Handle System is a proprietary registry assigning persistent identifiers, or handles, to information resources, and for resolving "those handles into the information necessary to locate, access, and otherwise make use of the resources". As with handles used elsewhere in computing, Handle System handles are opaque, and encode no information about the underlying resource, being bound only to metadata regarding the resource. Consequently, the handles are not rendered invalid by changes to the metadata.
Common modeling infrastructure refers to software libraries that can be shared across multiple institutions in order to increase software reuse and interoperability in complex modeling systems. Early initiatives were in the climate and weather domain, where software components representing distinct physical domains tended to be developed by domain specialists, often at different organizations. In order to create complete applications, these needed to be combined, using for instance a general circulation model, that transfers data between different components. An additional challenge is that these models generally require supercomputers to run, to account for the collected data and for data analyses. Thus, it was important to provide an efficient massively parallel computer system, and the processing hardware and software, to account for all the different workloads and communication channels.
The Common Metadata for Climate Modelling Digital Repositories, or METAFOR project, is creating a Common Information Model (CIM) for climate data and the models that produce it.
The National Unified Operational Prediction Capability (NUOPC) is a collaboration of modeling centers. The group is currently developing a new ensemble forecasting system for operational numerical weather prediction.
The Climate and Forecast (CF) metadata conventions are conventions for the description of Earth sciences data, intended to promote the processing and sharing of data files. The metadata defined by the CF conventions are generally included in the same file as the data, thus making the file "self-describing". The conventions provide a definitive description of what the data values found in each netCDF variable represent, and of the spatial and temporal properties of the data, including information about grids, such as grid cell bounds and cell averaging methods. This enables users of files from different sources to decide which variables are comparable, and is a basis for building software applications with powerful data extraction, grid remapping, data analysis, and data visualization capabilities.
The NOAA National Operational Model Archive and Distribution System (NOMADS) is a Web-services based project providing both real-time and retrospective format independent access to climate and weather model data.
Regional Ocean Modeling System (ROMS) is a free-surface, terrain-following, primitive equations ocean model widely used by the scientific community for a diverse range of applications. The model is developed and supported by researchers at the Rutgers University, University of California Los Angeles and contributors worldwide.
The Community Earth System Model (CESM) is a fully coupled numerical simulation of the Earth system consisting of atmospheric, ocean, ice, land surface, carbon cycle, and other components. CESM includes a climate model providing state-of-art simulations of the Earth's past, present, and future. It is the successor of the Community Climate System Model (CCSM), specifically version 4 (CCSMv4), which provided the initial atmospheric component for CESM. Strong ensemble forecasting capabilities, CESM-LE, were developed at the onset to control for error and biases across different model runs (realizations). Simulations from the Earth's surface through the thermosphere are generated utilizing the Whole Atmosphere Community Climate Model (WACCM). CESM1 was released in 2010 with primary development by the Climate and Global Dynamics Division (CGD) of the National Center for Atmospheric Research (NCAR), and significant funding by the National Science Foundation (NSF) and the Department of Energy (DoE).
A common data model (CDM) can refer to any standardised data model which allows for data and information exchange between different applications and data sources. Common data models aim to standardise logical infrastructure so that related applications can "operate on and share the same data", and can be seen as a way to "organize data from many sources that are in different formats into a standard structure".