Eresoidea

Last updated
Male Eresus kollari Eresus fg03.jpg
Male Eresus kollari

The Eresoidea or eresoids are a group of araneomorph spiders that have been treated as a superfamily. As usually circumscribed, the group contains three families: Eresidae, Hersiliidae and Oecobiidae. [1] Studies and reviews based on morphology suggested the monophyly of the group; more recent gene-based studies have found the Eresidae and Oecobiidae to fall into different clades, placing doubt on the acceptability of the taxon. Some researchers have grouped Hersiliidae and Oecobiidae into the separate superfamily Oecobioidea, a conclusion supported in a 2017 study, which does not support Eresoidea.

Phylogeny

Some largely morphology-based phylogenetic studies that included the three families assigned to the Eresoidea supported their monophyly, with the internal structure of the clade being as shown below. [2] [3]

Eresidae

Oecobiidae

Hersiliidae

Eresoidea was placed as basal in the Entelegynae, with its precise position relative to the Palpimanoidea, also basal, varying. In 2015, Jonathan A. Coddington summarized this as a trichotomy: [2]

Entelegynae

Eresoidea

Palpimanoidea

"canoe tapetum clade" holding the remaining entelegynes

Another summary phylogeny groups Eresoidea and Palpimanoidea into a single clade, sister to the "canoe tapetum clade" holding the remaining entelegynes. [3]

Other studies, particularly those using genetic data, have presented different views. A 2010 study of the phylogeny of entelegyne spiders separated Eresidae from Oecobiidae and Hersiliidae, placing the latter two in a superfamily Oecobioidea. [4] In 2014, a cladogram was presented in which Eresoidea is similarly paraphyletic (shading marks Eresoidea families): [5]

Entelegynae

Palpimanoidea

Eresidae

RTA clade

Hersiliidae

Oecobiidae

Orbiculariae

A 2014 study based on a larger portion of the spider genome than any previous study also separates the Eresidae and the Oecobiidae (Hersiliidae was not included) (eresoid families are again shaded): [6]

Entelegynae

Eresidae ( Stegodyphus )

Araneoidea

Uloboridae ( Philoponella )

Deinopidae ( Deinopis )

Oecobiidae ( Oecobius )

RTA Clade

A 2017 study also did not support Eresoidea, agreeing with earlier studies in placing Eresidae away from Hersiliidae and Oecobiidae, which were grouped as Oecobioidae. [7]

Related Research Articles

<span class="mw-page-title-main">Spider taxonomy</span> Science of naming, defining and classifying spiders

Spider taxonomy is that part of taxonomy that is concerned with the science of naming, defining and classifying all spiders, members of the Araneae order of the arthropod class Arachnida with more than 48,500 described species. However, there are likely many species that have escaped the human eye to this day, and many specimens stored in collections waiting to be described and classified. It is estimated that only one third to one half of the total number of existing species have been described.

<span class="mw-page-title-main">Cribellum</span>

Cribellum literally means "little sieve", and in biology the term generally applies to anatomical structures in the form of tiny perforated plates.

<span class="mw-page-title-main">Austrochilidae</span> Family of spiders

Austrochilidae is a small spider family with nine species in two genera. Austrochilus and Thaida are endemic to the Andean forest of central and southern Chile and adjacent Argentina.

<span class="mw-page-title-main">Micropholcommatinae</span> Subfamily of spiders

The Micropholcommatinae are a subfamily of araneomorph spiders in the family Anapidae. They were previously treated as the family Micropholcommatidae. Micropholcommatins are extremely small, with body lengths typically between 0.5 and 2 mm. They are usually found among leaf litter or moss.

<span class="mw-page-title-main">Dionycha</span> Clade of spiders

The Dionycha are a clade of spiders (Araneomorphae:Entelegynae), characterized by the possession of two tarsal claws with tufts of hairs (setae) beside them, which produce strong adhesion, enabling some species to climb glass. The circumscription of the group has varied widely; a 2021 analysis resulted in about 20 families, including Salticidae, Gnaphosidae, and Clubionidae.

<span class="mw-page-title-main">Palpimanoidea</span> Superfamily of spiders

The Palpimanoidea or palpimanoids, also known as assassin spiders, are a group of araneomorph spiders, originally treated as a superfamily. As with many such groups, its circumscription has varied. As of September 2018, the following five families were included:

<span class="mw-page-title-main">Dysderoidea</span> Superfamily of spiders

The Dysderoidea are a clade or superfamily of araneomorph spiders. The monophyly of the group, initially consisting of the four families Dysderidae, Oonopidae, Orsolobidae and Segestriidae, has consistently been recovered in phylogenetic studies. In 2014, a new family, Trogloraptoridae, was created for a recently discovered species Trogloraptor marchingtoni. It was suggested that Trogloraptoridae may be the most basal member of the Dysderoidea clade. However, a later study found that Trogloraptoridae was placed outside the Dysderoidea and concluded that it was not part of this clade.

<span class="mw-page-title-main">Deinopoidea</span> Superfamily of spiders

The Deinopoidea or deinopoids are group of cribellate araneomorph spiders that may be treated as a superfamily. As usually circumscribed, the group contains two families: Deinopidae and Uloboridae.

<span class="mw-page-title-main">Araneoidea</span> Superfamily of spiders

Araneoidea is a taxon of araneomorph spiders, termed "araneoids", treated as a superfamily. As with many such groups, its circumscription has varied; in particular some families that had at one time been moved to the Palpimanoidea have more recently been restored to Araneoidea. A 2014 treatment includes 18 families, with the araneoids making up about 26% of the total number of known spider species; a 2016 treatment includes essentially the same taxa, but now divided into 17 families.

<span class="mw-page-title-main">Agelenoidea</span>

The Agelenoidea or agelenoids are a superfamily or informal group of entelegyne araneomorph spiders. Phylogenetic studies since 2000 have not consistently recovered such a group, with more recent studies rejecting it.

The Dictynoidea or dictynoids are a group of araneomorph spiders that have been treated as a superfamily. The composition of the group has varied. Phylogenetic studies in the 21st century have failed to confirm the monophyly of the dictynoids as originally defined.

<span class="mw-page-title-main">Titanoecoidea</span> Superfamily of spiders

The Titanoecoidea or titanoecoids are a proposed taxon of araneomorph spiders at the superfamily rank. The taxon contains two families of spiders, Phyxelididae and Titanoecidae. Although some phylogenetic studies have shown these two families to form a clade, other studies have not, placing Titanoecidae outside the RTA clade while Phyxelididae is placed inside it. A 2011 classification of spider families leaves both Phyxelididae and Titanoecidae outside the RTA clade as "unplaced non-Orbiculariae families". The status of the group remains unclear as of December 2015.

<span class="mw-page-title-main">Austrochiloidea</span> Superfamily of spiders

The Austrochiloidea or austrochiloids are a group of araneomorph spiders, treated as a superfamily. The taxon contains two families of eight-eyed spiders:

<span class="mw-page-title-main">Haplogynae</span> Infraorder of spiders

The Haplogynae or haplogynes are one of the two main groups into which araneomorph spiders have traditionally been divided, the other being the Entelegynae. Morphological phylogenetic studies suggested that the Haplogynae formed a clade; more recent molecular phylogenetic studies refute this, although many of the ecribellate haplogynes do appear to form a clade, Synspermiata.

<span class="mw-page-title-main">Entelegynae</span> Clade of spiders

The Entelegynae or entelegynes are a subgroup of araneomorph spiders, the largest of the two main groups into which the araneomorphs were traditionally divided. Females have a genital plate (epigynum) and a "flow through" fertilization system; males have complex palpal bulbs. Molecular phylogenetic studies have supported the monophyly of Entelegynae.

<span class="mw-page-title-main">Atypoidea</span> Superfamily of arachnids

Atypoidea is a clade of mygalomorph spiders, one of the two main groups into which the mygalomorphs are divided. It has been treated at the rank of superfamily. It contains five families of spiders:

<span class="mw-page-title-main">Orbiculariae</span>

Orbiculariae is a potential clade of araneomorph spiders, uniting two groups that make orb webs. Phylogenetic analyses based on morphological characters have generally recovered this clade; analyses based on DNA have regularly concluded that the group is not monophyletic. The issue relates to the origin of orb webs: whether they evolved early in the evolutionary history of entelegyne spiders, with many groups subsequently losing the ability to make orb webs, or whether they evolved later, with fewer groups having lost this ability. As of September 2018, the weight of the evidence strongly favours the non-monophyly of "Orbiculariae" and hence the early evolution of orb webs, followed by multiple changes and losses.

<span class="mw-page-title-main">RTA clade</span> Clade of spiders

The RTA clade is a clade of araneomorph spiders, united by the possession of a retrolateral tibial apophysis – a backward-facing projection on the tibia of the male pedipalp. The clade contains over 21,000 species, almost half the current total of about 46,000 known species of spider. Most of the members of the clade are wanderers and do not build webs. Despite making up approximately half of all modern spider diversity, there are no unambiguous records of the group from the Mesozoic and molecular clock evidence suggests that the group began to diversify during the Late Cretaceous.

<span class="mw-page-title-main">Synspermiata</span> Clade of spiders

Synspermiata is a clade of araneomorph spiders, comprising most of the former "haplogynes". They are united by having simpler genitalia than other araneomorph spiders, lacking a cribellum, and sharing an evolutionary history of synspermia – a particular way in which spermatozoa are grouped together when transferred to the female.

<span class="mw-page-title-main">Avicularioidea</span> Clade of spiders

Avicularioidea is a clade of mygalomorph spiders, one of the two main clades into which mygalomorphs are divided. It has been treated at the rank of superfamily.

References

  1. Dunlop, Jason A. & Penney, David (2011), "Order Araneae Clerck, 1757" (PDF), in Zhang, Z.-Q. (ed.), Animal biodiversity: An outline of higher-level classification and survey of taxonomic richness, Zootaxa, Auckland, New Zealand: Magnolia Press, ISBN   978-1-86977-850-7 , retrieved 2015-10-31
  2. 1 2 Coddington, Jonathan A. & Levi, Herbert W. (1991), "Systematics and evolution of spiders (Araneae)", Annual Review of Ecology and Systematics, 22: 565–592, doi:10.1146/annurev.es.22.110191.003025, JSTOR   2097274, S2CID   55647804
  3. 1 2 Nentwig, Wolfgang, ed. (2013), "Appendix : Spider Phylogeny" (PDF), Spider Ecophysiology, Springer, ISBN   978-3-642-33988-2 , retrieved 2015-11-03
  4. Miller, Jeremy A.; Carmichael, Anthea; Ramírez, Martín J.; Spagna, Joseph C.; Haddad, Charles R.; Řezáč, Milan; Johannesen, Jes; Král, Jiří; Wang, Xin-Ping & Griswold, Charles E. (2010), "Phylogeny of entelegyne spiders: Affinities of the family Penestomidae (NEW RANK), generic phylogeny of Eresidae, and asymmetric rates of change in spinning organ evolution (Araneae, Araneoidea, Entelegynae)", Molecular Phylogenetics and Evolution, 55 (3): 786–804, doi:10.1016/j.ympev.2010.02.021, PMID   20206276
  5. Hormiga, Gustavo & Griswold, Charles E. (2014), "Systematics, Phylogeny, and Evolution of Orb-Weaving Spiders", Annual Review of Entomology, 59 (1): 487–512, doi: 10.1146/annurev-ento-011613-162046 , PMID   24160416
  6. Bond, Jason E.; Garrison, Nicole L.; Hamilton, Chris A.; Godwin, Rebecca L.; Hedin, Marshal & Agnarsson, Ingi (2014), "Phylogenomics Resolves a Spider Backbone Phylogeny and Rejects a Prevailing Paradigm for Orb Web Evolution", Current Biology, 24 (15): 1765–1771, doi: 10.1016/j.cub.2014.06.034 , PMID   25042592
  7. Wheeler, Ward C.; Coddington, Jonathan A.; Crowley, Louise M.; Dimitrov, Dimitar; Goloboff, Pablo A.; Griswold, Charles E.; Hormiga, Gustavo; Prendini, Lorenzo; Ramírez, Martín J.; Sierwald, Petra; Almeida-Silva, Lina; Alvarez-Padilla, Fernando; Arnedo, Miquel A.; Benavides Silva, Ligia R.; Benjamin, Suresh P.; Bond, Jason E.; Grismado, Cristian J.; Hasan, Emile; Hedin, Marshal; Izquierdo, Matías A.; Labarque, Facundo M.; Ledford, Joel; Lopardo, Lara; Maddison, Wayne P.; Miller, Jeremy A.; Piacentini, Luis N.; Platnick, Norman I.; Polotow, Daniele; Silva-Dávila, Diana; Scharff, Nikolaj; Szűts, Tamás; Ubick, Darrell; Vink, Cor J.; Wood, Hannah M. & Zhang, Junxia (2017) [published online 2016], "The spider tree of life: phylogeny of Araneae based on target-gene analyses from an extensive taxon sampling", Cladistics, 33 (6): 574–616, doi: 10.1111/cla.12182 , PMID   34724759, S2CID   35535038