Evergreen Formation

Last updated

Evergreen Formation
Stratigraphic range: Lower Pliensbachian- Late Toarcian
~186.74–175.94  Ma
Type Geological formation
Unit of Bundamba Group
Sub-unitsBoxvale Sandstone & Westgrove Ironstone Members
Underlies Hutton Sandstone
Overlies Precipice Sandstone
ThicknessUp to 255 m (837 ft)
Lithology
Primary Sandstone, siltstone, mudstone
Other Coal, ironstone
Location
Coordinates 25°48′S150°18′E / 25.8°S 150.3°E / -25.8; 150.3
Approximate paleocoordinates 61°42′S90°00′E / 61.7°S 90.0°E / -61.7; 90.0
RegionFlag of New South Wales.svg  New South Wales
Flag of Queensland.svg  Queensland
CountryFlag of Australia (converted).svg  Australia
Extent
Type section
Named for"Evergreen Shales"
Named byHogetoorn [3]
Australia relief map.jpg
Blue pog.svg
Evergreen Formation (Australia)

The Evergreen Formation is a Pliensbachian to Toarcian geologic formation of the Surat Basin in New South Wales and Queensland, eastern Australia. Traditionally it has been considered to be a unit whose age has been calculated in between the Pliensbachian and Toarcian stages of the Early Jurassic, with some layers suggested to reach the Aalenian stage of the Middle Jurassic, yet modern data has found that an Early Pliensbachian to Latest Toarcian age is more possible. [4] [5] [6] The formation was named due to the "Evergreen Shales", defined with a lower unit, the Boxvale Sandstone, and a partially coeval, partially younger upper unit, the Westgrove Ironstone Member. [7] This unit overlies the Hettangian-Sinemurian Precipice Sandstone, as well several informal units such as the Nogo Beds, and Narayen beds, as well Torsdale Volcanics. [7] This unit likely was deposited in a massive lacustrine body with possible marine environment influences. [8]

Contents

Fossil content

Indeterminate Unionoid bivalves are know from the Kolane Station. [9]

Ichnofossils

GenusSpeciesTypeLocationMaterialOriginImages

Asterosoma [10]

  • A. isp.

Fodinichnia

  • Chinchilla 4 Borehole
  • Condabri MB9-H Borehole
  • Kenya East GW7 Borehole
  • Moonie 31 Borehole
  • Moonie 34 Borehole
  • Reedy Creek MB3-H Borehole
  • Roma 8 Borehole
  • Taroom 17 Borehole
  • West Wandoan 1 Borehole
  • Woleebee Creek GW4 Borehole

Radiating bulb-like swelling burrows

Annelid worm, vermiform organism

Conichnus [10]

  • C. isp.
  • Domichnia
  • Cubichnia

trails

Gastropods

Cylindrichnus [10]

  • C. isp.
  • Domichnia

Long, subconical, weakly curved burrows

  • Anemones
  • Polychaete worms

Diplocraterion [10]

  • D. parallelum

Domichnia

U-shaped burrows

Diplocraterion parallelum diagram Diplocraterion parallelum diagram DE.png
Diplocraterion parallelum diagram

Helminthopsis [10]

  • H. isp.

Fodinichnia

Simple, unbranched, horizontal cylinder traces

Example of Helminthopsis fossil Helminthopsis01.JPG
Example of Helminthopsis fossil

Lockeia [10]

  • L. amygdaloides
  • L. isp.
  • Cubichnia
  • Domichnia

Dwelling traces

  • Bivalves
DevonianLockeia121911.jpg

Naktodemasis [10]

  • N. isp.

Fodinichnia

Straight to sinuous, unlined and unbranched burrows

  • Soil bugs
  • Cicada nymphs
  • Scarabaeid beetle larvae

Palaeophycus [10]

  • P. tubularis

Domichnia

Straight or gently curved tubular burrows.

Example of Palaeophycus fossil Palaeophycus01.JPG
Example of Palaeophycus fossil

Phycosiphon [10]

  • P. isp.

Fodinichnia

Irregularly meandering burrows

Vermiform Animals

Planolites [10]

  • P. montanus
  • P. beverleyensis
  • P. isp.

Pascichnia

Cylindrical or elliptical curved/tortuous trace fossils

  • Polychaetes
  • Insects
Example of Planolites fossil Planolites.jpg
Example of Planolites fossil

Scolicia [10]

  • S. isp.
  • Cubichnia

Symmetrical trail or burrow

Gastropods

Scolicia trails Scolicia Punta San Garcia 01.JPG
Scolicia trails

Skolithos [10]

  • S. isp.

Domichnia

Cylindrical strands with branches

  • Polychaetes
  • Phoronidans

Siphonichnus [10]

  • S. ophthalmoides

Domichnia

Cylindrical strands with branches

  • Polychaetes
  • Phoronidans

Taenidium [10]

  • T. serpentinum
  • T. isp.

Fodinichnia

Unlined meniscate burrows

Thalassinoides [10]

  • T. isp.

Tubular Fodinichnia

Tubular Burrows

Thalassinoides burrowing structures, with modern related fauna, showing the ecological convergence and the variety of animals that left this Ichnogenus. Talassinodes illustration.jpg
Thalassinoides burrowing structures, with modern related fauna, showing the ecological convergence and the variety of animals that left this Ichnogenus.

Teichichnus [10]

  • T. isp.

Fodinichnia

Vertical to oblique, unbranched or branched, elongated to arcuate spreite burrow

Teichichnus burrows Teichichnus burrows.jpg
Teichichnus burrows

Diplopoda

GenusSpeciesLocationStratigraphic positionMaterialNotesImages

Decorotergum [11]

  • D. warrenae
  • Kolane Station, 58 km ENE of Taroom

Westgrove Ironstone Member

Incomplete specimens: QMF12294, QMF12295 and one small fragment of a third specimen, QMF12296

A millipede whose affinities are controversial. It may be an Oniscomorpha of the order Amynilyspedida family Amynilyspedidae or a member of the order Polydesmida

Extant example of the order Amynilyspedida, Glomeris Glomeris oblongoguttata, Pisogn, Italy.png
Extant example of the order Amynilyspedida, Glomeris

Vertebrata

GenusSpeciesLocationStratigraphic positionMaterialNotesImages

Plesiosauria [12] [13]

Indeterminate

  • Kolane Station, 58 km ENE of Taroom

Westgrove Ironstone Member

  • QM F10440, Limb, girdle and vertebral fragments from a single skeleton
  • QM F10441, partial skeleton

A Freshwater Plesiosaur with affinities with Pliosauridae and Neoplesiosauria

Siderops [9]

S. kehli

  • Kolane Station, 58 km ENE of Taroom

Westgrove Ironstone Member

  • QM F7822, nearly complete skull with mandible and postcrania

A gigantic chigutisaurid temnospondyl, representing a relictual genus isolated in the Australian Ecoregion, as well one of the largest Mesozoic amphibians

Restoration of Siderops kehli Siderops2DB.png
Restoration of Siderops kehli

Phytoplankton

GenusSpeciesStratigraphic positionMaterialNotesImages

Chomotriletes [14]

  • C. triangularis
  • GSQ Mundubera Borehole
  • Spores

Affinities with the family Zygnemataceae. A genus derived from freshwater filamentous or unicellular, uniseriate (unbranched) green algae.

Bryophyta

GenusSpeciesStratigraphic positionMaterialNotesImages

Anapiculatisporites [14]

  • A. dawsonensis
  • A. pristidentatus
  • GSQ Mundubera Borehole
  • Spores

Incertae sedis; affinities with Bryophyta.

Cingutriletes [14]

  • C. clavus
  • C. parvus
  • GSQ Mundubera Borehole
  • Spores

Incertae sedis; affinities with Bryophyta.

Distalanulisporites [14]

  • D. punctus
  • D. verrucosus
  • GSQ Mundubera Borehole
  • Spores

Affinities with the family Sphagnaceae in the Sphagnopsida.

Foraminisporis [1]

  • F. spp.
  • Chinchilla 4 Borehole
  • Condabri MB9-H Borehole
  • Kenya East GW7 Borehole
  • Moonie 31 Borehole
  • Reedy Creek MB3-H Borehole
  • Roma 8 Borehole
  • Taroom 17 Borehole
  • West Wandoan 1 Borehole
  • Woleebee Creek GW4 Borehole
  • Spores

Affinities with the family Notothyladaceae in the Anthocerotopsida.

Nevesisporites [1] [15] [14]

  • N. vallatus
  • Boxvale Area
  • Chinchilla 4 Borehole
  • Condabri MB9-H Borehole
  • GSQ Mundubera Borehole
  • Kenya East GW7 Borehole
  • Moonie 31 Borehole
  • Reedy Creek MB3-H Borehole
  • Roma 8 Borehole
  • Taroom 17 Borehole
  • West Wandoan 1 Borehole
  • Spores

Incertae sedis; affinities with Bryophyta. This spore is found in Jurassic sediments associated with the polar regions.

Polycingulatisporites [1] [15] [14]

  • P. crenulatus
  • P. densatus
  • P. mooniensis
  • P. triangularis
  • P. tortuosus
  • Boxvale Area
  • Chinchilla 4 Borehole
  • Condabri MB9-H Borehole
  • GSQ Mundubera Borehole
  • Kenya East GW7 Borehole
  • Moonie 31 Borehole
  • Reedy Creek MB3-H Borehole
  • Roma 8 Borehole
  • Taroom 17 Borehole
  • West Wandoan 1 Borehole
  • Woleebee Creek GW4 Borehole
  • Spores

Affinities with the family Notothyladaceae in the Anthocerotopsida. Hornwort spores.

Extant Notothylas specimens Notothylas orbicularis (Anthocerotophyta (hornwort)).png
Extant Notothylas specimens

Rogalskaisporites [14]

  • R. cicatricosus
  • R. multicicatricosus
  • GSQ Mundubera Borehole
  • Spores

Affinities with the family Sphagnaceae in the Sphagnopsida.

Stereisporites [15] [14]

  • S. antiquasporites
  • S. radiatus
  • Boxvale Area
  • GSQ Mundubera Borehole
  • Spores

Affinities with the family Sphagnaceae in the Sphagnopsida. "Peat moss" spores, related to genera such as Sphagnum that can store large amounts of water.

Extant Sphagnum specimens SphagnumFallax.jpg
Extant Sphagnum specimens

Staplinisporites [15] [14]

  • S. caminus
  • S. manifestus
  • S. pocockii
  • Boxvale Area
  • GSQ Mundubera Borehole
  • Spores

Affinities with the family Encalyptaceae in the Bryopsida. Branching moss spores, indicating high water-depleting environments.

Extant Encalypta specimens; Staplinisporites probably come from similar genera Encalypta alpina (a, 124941-470711) 2281.JPG
Extant Encalypta specimens; Staplinisporites probably come from similar genera

Lycophyta

GenusSpeciesStratigraphic positionMaterialNotesImages

Antulsporites [14]

  • A. granulatus
  • A. saevus
  • A. varigranulatus
  • A. spp.
  • GSQ Mundubera Borehole
  • Spores

Affinities with the Selaginellaceae in the Lycopsida.

Apiculatisporis [14]

  • A. spp.
  • GSQ Mundubera Borehole
  • Spores

Incertae sedis; affinities with Lycopodiopsida

Cadargasporites [1] [15] [14]

  • C. baculatus
  • C. granulatus
  • C. reticulatus
  • Boxvale Area
  • Chinchilla 4 Borehole
  • Condabri MB9-H Borehole
  • GSQ Mundubera Borehole
  • Kenya East GW7 Borehole
  • Moonie 31 Borehole
  • Reedy Creek MB3-H Borehole
  • Roma 8 Borehole
  • Taroom 17 Borehole
  • West Wandoan 1 Borehole
  • Woleebee Creek GW4 Borehole
  • Spores

Affinities with the Selaginellaceae in the Lycopsida. Herbaceous lycophyte flora, similar to ferns, found in humid settings. This family of spores are also the most diverse in the formation.

Extant Selaginella, typical example of Selaginellaceae Selaginella erythropus kz02.jpg
Extant Selaginella , typical example of Selaginellaceae

Camarozonosporites [15] [14]

  • C. clivosus
  • C. ramosus
  • C. rudis
  • C. spp.
  • Boxvale Area
  • Chinchilla 4 Borehole
  • Condabri MB9-H Borehole
  • GSQ Mundubera Borehole
  • Kenya East GW7 Borehole
  • Moonie 31 Borehole
  • Reedy Creek MB3-H Borehole
  • Roma 8 Borehole
  • Taroom 17 Borehole
  • West Wandoan 1 Borehole
  • Woleebee Creek GW4 Borehole
  • Spores

Affinities with the family Lycopodiaceae in the Lycopodiopsida. Lycopod spores, related to herbaceous to arbustive flora common in humid environments.

Dictyotosporites [16]
  • D. sandrana
  • GSQ DRD 22
  • Spores
Incertae sedis; affinities with Lycopodiopsida.

Lycopodiumsporites [15] [14]

  • L. austroclavatidites
  • L. circolumenus
  • L. rosewoodensis
  • L. semimuris
  • L. triangularis
  • Boxvale Area
  • GSQ Mundubera Borehole
  • Spores

Affinities with the family Lycopodiaceae in the Lycopodiopsida. Lycopod spores, related to herbaceous to arbustive flora common in humid environments.

Extant Lycopodium specimens Lycopodium annotinum 161102.jpg
Extant Lycopodium specimens

Neoraistrickia [14]

  • N. elongata
  • N. suratensis
  • N. truncata
  • N. spp.
  • GSQ Mundubera Borehole
  • Spores

Affinities with the Selaginellaceae in the Lycopsida.

Punctatosporites [15] [14]

  • P. walkomii
  • Boxvale Area
  • Spores

Incertae sedis; affinities with Lycopodiopsida.

Retitriletes [14]

  • R. austroclavatidites
  • R. huttonensis
  • R. rosewoodensis
  • R. semimurus
  • GSQ Mundubera Borehole
  • Spores

Affinities with the family Lycopodiaceae in the Lycopodiopsida.

Lycopodiumsporites [14]

  • S. pseudoalveolatus
  • GSQ Mundubera Borehole
  • Spores

Affinities with the family Lycopodiaceae in the Lycopodiopsida. Lycopod spores, related to herbaceous to arbustive flora common in humid environments.

Uvaesporites [14]

  • U. verrucosus
  • GSQ Mundubera Borehole
  • Spores

Affinities with the Selaginellaceae in the Lycopsida.

Pteridophyta

GenusSpeciesStratigraphic positionMaterialNotesImages

Annulispora [15] [14]

  • A. altmarkensis
  • A. badia
  • A. densata
  • A. folliculosa
  • A. microannulata
  • A. radiata
  • A. triangularis
  • A. spp.
  • Boxvale area
  • GSQ Mundubera Borehole
  • Spores

Affinities with the genus Saccoloma , type representative of the family Saccolomataceae . This fern spore resembles those of the living genus Saccoloma, being probably from a pantropical genus found in wet, shaded forest areas.

Extant Saccoloma specimens; Annulispora probably comes from similar genera or maybe a species in the genus Saccoloma brasiliense kz02.jpg
Extant Saccoloma specimens; Annulispora probably comes from similar genera or maybe a species in the genus

Baculatisporites [15] [14]

  • B. comaumensis
  • Boxvale area
  • GSQ Mundubera Borehole
  • Spores

Affinities with the family Osmundaceae in the Polypodiopsida. Near fluvial current ferns, related to the modern Osmunda regalis.

Extant Osmunda specimens; Baculatisporites and Todisporites probably come from similar genera or maybe a species from the genus Cinnamon Fern (Osmundastrum cinnamomeum) - Cape St. Mary's Ecological Reserve, Newfoundland 2019-08-10.jpg
Extant Osmunda specimens; Baculatisporites and Todisporites probably come from similar genera or maybe a species from the genus

Biretisporites [14]

  • B. modestus
  • GSQ Mundubera Borehole
  • Spores

Affinities with the Marattiaceae in the Polypodiopsida. Fern spores from low herbaceous flora.

Cingulatisporites [14]

  • C. caminus
  • GSQ Mundubera Borehole
  • Spores

Incertae sedis; affinities with the Pteridophyta

Clavatisporites [14]

  • C. hammenii
  • GSQ Mundubera Borehole
  • Spores

Incertae sedis; affinities with the Pteridophyta

Cyathidites [14]

  • C. australis
  • C. minor
  • GSQ Mundubera Borehole
  • Spores

Affinities with the family Cyatheaceae in the Cyatheales. Arboreal fern spores.

Extant Cyathea Cyathea medullaris.JPG
Extant Cyathea

Dictyophyllidites [15] [14]

  • D. mortoni
  • Boxvale area
  • Spores

Affinities with the family Matoniaceae in the Gleicheniales.

Duplexisporites [14]

  • D. problematicus
  • D. spp.
  • GSQ Mundubera Borehole
  • Spores

Incertae sedis; affinities with the Pteridophyta

Foveosporites [14]

  • F. moretonensis
  • GSQ Mundubera Borehole
  • Spores

Incertae sedis; affinities with the Pteridophyta

Gleicheniidites [15] [14]

  • G. senonicus
  • G. spp.
  • Boxvale area
  • GSQ Mundubera Borehole
  • Spores

Affinities with the Gleicheniales in the Polypodiopsida. Fern spores from low herbaceous flora.

Extant Gleichenia specimens; Gleicheniidites probably come from similar genera or maybe a species in the genus Chemancheri 20181117 122614.jpg
Extant Gleichenia specimens; Gleicheniidites probably come from similar genera or maybe a species in the genus

Granulatisporites [14]

  • G. spp.
  • GSQ Mundubera Borehole
  • Spores

Affinities with the Pteridaceae in the Polypodiopsida. Forest ferns from humid ground locations.

Extant Pityrogramma specimens Starr-091207-0293-Pityrogramma austroamericana-habit-Behind Holua Haleakala National Park-Maui (24898271151).jpg
Extant Pityrogramma specimens

Heliosporites [14]

  • H. spp
  • GSQ Mundubera Borehole
  • Spores

Incertae sedis; affinities with the Pteridophyta

Ischyosporites [15] [14]

  • I. marburgensis
  • I. surangulus
  • Boxvale area
  • GSQ Mundubera Borehole
  • Spores

Incertae sedis; affinities with the Pteridophyta

Leiotriletes [15] [14]

  • L. directus
  • L. magnus
  • GSQ Mundubera Borehole
  • Spores

Incertae sedis; affinities with the Pteridophyta

Leptolepidites [15] [14]

  • L. major
  • L. verrucatus
  • GSQ Mundubera Borehole
  • Spores

Affinities with the family Dennstaedtiaceae in the Polypodiales. Forest fern spores.

Extant Dennstaedtia specimens; Leptolepidites probably comes from similar genera Fern Path (9540302241).jpg
Extant Dennstaedtia specimens; Leptolepidites probably comes from similar genera

Matonisporites [15] [14]

  • M. spp
  • Boxvale area
  • GSQ Mundubera Borehole
  • Spores

Affinities with the family Matoniaceae in the Gleicheniales.

Osmundacidites [14]

  • O. wellmanii
  • GSQ Mundubera Borehole
  • Spores

Affinities with the family Osmundaceae in the Polypodiopsida. Near fluvial current ferns, related to the modern Osmunda regalis.

Peroaletes [14]

  • P. rugosus
  • GSQ Mundubera Borehole
  • Spores

Incertae sedis; affinities with the Pteridophyta

Perotrilites [14]

  • P. tenuis
  • GSQ Mundubera Borehole
  • Spores

Incertae sedis; affinities with the Pteridophyta

Polypodiisporites [14]

  • P. ipsviciensis
  • GSQ Mundubera Borehole
  • Spores

Affinities with the family Dennstaedtiaceae in the Polypodiales. Forest fern spores.

Rugulatisporites [14]

  • R. ramosus
  • R. spp.
  • GSQ Mundubera Borehole
  • Spores

Affinities with the family Osmundaceae in the Polypodiopsida. Near fluvial current ferns, related to the modern Osmunda regalis.

Peltaspermales

GenusSpeciesStratigraphic positionMaterialNotesImages

Alisporites [15] [14]

  • A. australis
  • A. lowoodensis
  • A. similis
  • Boxvale Area
  • Pollen

Affinities with the families Peltaspermaceae, Corystospermaceae or Umkomasiaceae in the Peltaspermales. Pollen of uncertain provenance that can be derived from any of the members of the Peltaspermales. The lack of distinctive characters and poor conservation make this pollen difficult to classify. Arboreal to arbustive seed ferns.

Kekryphalospora [1]

  • K. distincta
  • Chinchilla 4 Borehole
  • Condabri MB9-H Borehole
  • Kenya East GW7 Borehole
  • Moonie 31 Borehole
  • Reedy Creek MB3-H Borehole
  • Roma 8 Borehole
  • Taroom 17 Borehole
  • West Wandoan 1 Borehole
  • Woleebee Creek GW4 Borehole
  • Pollen

Affinities with the families Peltaspermaceae, Corystospermaceae or Umkomasiaceae in the Peltaspermales. Extremely abundant

Vitreisporites [15] [14]

  • V. contectus
  • V. pallidus
  • Boxvale Area
  • GSQ Mundubera Borehole
  • Pollen

From the family Caytoniaceae in the Caytoniales. Caytoniaceae are a complex group of Mesozoic fossil floras that may be related to both Peltaspermales and Ginkgoaceae.

Cycadophyta

GenusSpeciesStratigraphic positionMaterialNotesImages

Cycadopites [14]

  • C. crassimarginis
  • C. granulatus
  • C. infirmus
  • C. nitidus
  • GSQ Mundubera Borehole
  • Pollen

Affinities with the family Cycadaceae in the Cycadales or with Cycadaceae and Bennettitaceae. It has been found associated with the Bennetite pollen cone Bennettistemon

Extant Cycas platyphylla Cycas platyphylla Male cone 3.jpg
Extant Cycas platyphylla

Conifers

GenusSpeciesStratigraphic positionMaterialNotesImages

Araucariacites [10] [14]

  • A. australis
  • A. fissus
  • Chinchilla 4 Borehole
  • GSQ Mundubera Borehole
  • Pollen

Affinities with the family Araucariaceae in the Pinales. Conifer pollen from medium to large arboreal plants.

Extant Araucaria. Callialasporites may come from a related plant Araucaria bidwillii - pollen cones.jpg
Extant Araucaria . Callialasporites may come from a related plant

Callialasporites [10]

  • C. dampierii
  • C. turbatus
  • C. propinquivellersis [16]
  • Chinchilla 4 Borehole
  • Kenya East GW7 Borehole
  • GSQ DRD 24
  • Pollen

Affinities with the family Araucariaceae in the Pinales. Conifer pollen from medium to large arboreal plants.

Classopollis [1] [15] [14]

  • C. classoides
  • C. meyeriana
  • C. simplex
  • C. spp.
  • Boxvale Area
  • Chinchilla 4 Borehole
  • Condabri MB9-H Borehole
  • GSQ Mundubera Borehole
  • Kenya East GW7 Borehole
  • Moonie 31 Borehole
  • Reedy Creek MB3-H Borehole
  • Roma 8 Borehole
  • Taroom 17 Borehole
  • West Wandoan 1 Borehole
  • Woleebee Creek GW4 Borehole
  • Pollen

Affinities with the Hirmeriellaceae in the Pinopsida.

Inaperturopollenites [15] [14]

  • I. turbatus
  • I. spp.
  • Boxvale Area
  • GSQ Mundubera Borehole
  • Pollen

Affinities with the Pinidae inside Coniferae.

Extant Pinus cembra Cone, example of the Pinidae. Inaperturopollenites is similar to the pollen found on this genus Pinus cembra cones in Groden crop.jpg
Extant Pinus cembra Cone, example of the Pinidae. Inaperturopollenites is similar to the pollen found on this genus

Indusiisporites [15] [14]

  • I. parvisaccatus
  • Boxvale Area
  • GSQ Mundubera Borehole
  • Pollen

Affinities with the family Podocarpaceae inside Coniferae.

Perinopollenites [1] [15] [14]

  • P. elatoides
  • Boxvale Area
  • Chinchilla 4 Borehole
  • Condabri MB9-H Borehole
  • GSQ Mundubera Borehole
  • Kenya East GW7 Borehole
  • Moonie 31 Borehole
  • Reedy Creek MB3-H Borehole
  • Roma 8 Borehole
  • Taroom 17 Borehole
  • West Wandoan 1 Borehole
  • Woleebee Creek GW4 Borehole
  • Pollen

Affinities with the family Cupressaceae in the Pinopsida. Pollen that resembles that of extant genera such as the genus Actinostrobus and Austrocedrus , probably derived from dry environments.

Extant Austrocedrus Austrocedrus chilensis.jpg
Extant Austrocedrus

Podocarpidites [14]

  • P. ellipticus
  • GSQ Mundubera Borehole
  • Pollen

Affinities with the family Podocarpaceae. Pollen from diverse types of Podocarpaceous conifers, that include morphotypes similar to the low arbustive Microcachrys and the medium arbustive Lepidothamnus , likely linked with Upland settings

Extant Microcachrys Microcachrys tetragona 112011800.jpg
Extant Microcachrys

Podosporites [15] [14]

  • P. spp.
  • Boxvale Area
  • GSQ Mundubera Borehole
  • Pollen

Affinities with the family Podocarpaceae.

Trisaccites [14]

  • T. variabilis
  • GSQ Mundubera Borehole
  • Pollen

Affinities with the family Podocarpaceae.

Zonalapollenites [15] [14]

  • Z. dampieri
  • Z. segmentatus
  • Z. trilobatus
  • Boxvale Area
  • GSQ Mundubera Borehole
  • Pollen

Affinities with the family Pinaceae in the Pinopsida. Conifer pollen from medium to large arboreal plants.

Extant Picea. Picea Pungens Young Cones.jpg
Extant Picea .

References

  1. 1 2 3 4 5 6 7 8 La Croix, Andrew D.; Sobczak, Kasia; Esterle, Joan S.; Bianchi, Valeria; Wang, Jiahao; He, Jianhua; Hayes, Phil; Underschultz, Jim R.; Garnett, Andrew (2022). "Integrating palynostratigraphy with zircon geochronology in the Lower Jurassic Precipice Sandstone and Evergreen Formation to improve stratigraphic correlation within the Great Artesian Basin, Australia". Marine and Petroleum Geology. 144 (4): 56–89. Bibcode:2022MarPG.14405845L. doi:10.1016/j.marpetgeo.2022.105845. ISSN   0264-8172.
  2. Waschbusch, P.; Korsch, R.J.; Beaumont, C. (2009). "Geodynamic modelling of aspects of the Bowen, Gunnedah, Surat and Eromanga Basins from the perspective of convergent margin processes". Australian Journal of Earth Sciences. 56 (3): 309–334. Bibcode:2009AuJES..56..309W. doi:10.1080/08120090802698661 . Retrieved 31 May 2023.
  3. Hogetoorn, D.J. (1967). "Jurassic reservoirs of the Surat Basin". World Petroleum Congress. 7: 161–170. Retrieved 31 May 2023.
  4. "Australian Government- Geoscience Australia Australian Stratigraphic Units Database". ga.gov.au. Geoscience Australia. Retrieved 19 January 2015.
  5. Todd, Christopher N.; Roberts, Eric M.; Knutsen, Espen M.; Rozefelds, Andrew C.; Huang, Hui-Qing; Spandler, Carl (December 2019). "Refined age and geological context of two of Australia's most important Jurassic vertebrate taxa (Rhoetosaurus brownei and Siderops kehli), Queensland". Gondwana Research. 76: 19–25. Bibcode:2019GondR..76...19T. doi:10.1016/j.gr.2019.05.008.
  6. Sobczak, Kasia; La Croix, Andrew D.; Esterle, Joan; Hayes, Phil; Holl, Heinz-Gerd; Ciesiolka, Rachael; Crowley, James L.; Allen, Charlotte M. (2022). "Geochronology and sediment provenance of the Precipice Sandstone and Evergreen Formation in the Surat Basin, Australia: Implications for the palaeogeography of eastern Gondwana". Gondwana Research. 111: 189–208. Bibcode:2022GondR.111..189S. doi:10.1016/j.gr.2022.08.003. ISSN   1342-937X.
  7. 1 2 Withnall, I. W.; Hutton, L. J.; Bultitude, R. J.; Von Gnielinski, F. E.; Rienks, I. P. (2009). "Geology of the Auburn Arch, southern Connors Arch and adjacent parts of the Bowen Basin and Yarrol Province, central Queensland". Queensland Geology. 12 (2): 13–32. Retrieved 31 May 2023.
  8. Martin, M.; Wakefield, M.; Bianchi, V.; Esterle, J.; Zhou, F. (2017). "Evidence for marine influence in the Lower Jurassic Precipice Sandstone, Surat Basin, eastern Australia". Australian Journal of Earth Sciences. 65 (1): 75–91. doi:10.1080/08120099.2018.1402821 . Retrieved 31 May 2023.
  9. 1 2 Warren, A. A.; Hutchinson, M. N. (1983). "The Last Labyrinthodont? A New Brachyopoid (Amphibia, Temnospondyli) from the Early Jurassic Evergreen Formation of Queensland, Australia". Philosophical Transactions of the Royal Society B: Biological Sciences. 303 (1113): 1–62. Bibcode:1983RSPTB.303....1W. doi:10.1098/rstb.1983.0080 . Retrieved 30 March 2022.
  10. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 La Croix, A. D.; Wang, J.; He, J.; Hannaford, C.; Bianchi, V.; Esterle, J.; Undershultz, J. R. (2019). "Widespread nearshore and shallow marine deposition within the Lower Jurassic Precipice Sandstone and Evergreen Formation in the Surat Basin, Australia". Marine and Petroleum Geology. 109 (3): 760–790. Bibcode:2019MarPG.109..760L. doi:10.1016/j.marpetgeo.2019.06.048. hdl: 10289/12877 . Retrieved 30 May 2023.
  11. Jell, P. A. (1983). "An Early Jurassic millipede from the Evergreen Formation in Queensland". Alcheringa. 7 (3): 195–199. Bibcode:1983Alch....7..195J. doi:10.1080/03115518308619618 . Retrieved 30 May 2023.
  12. Thulborn, Richard A; Warren, Anne (1980). "Early Jurassic plesiosaurs from Australia". Nature. 285 (57): 224–225. Bibcode:1980Natur.285..224T. doi:10.1038/285224a0 . Retrieved 30 May 2023.
  13. Kear, B. P. (2012). "A revision of Australia's Jurassic plesiosaurs". Palaeontology. 55 (5): 1125–1138. Bibcode:2012Palgy..55.1125K. doi:10.1111/j.1475-4983.2012.01183.x . Retrieved 30 May 2023.
  14. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 McKellar, J. L. (1974). "Jurassic miospores from the upper Evergreen Formation, Hutton Sandstone, and basal Injune Creek Group, north-eastern Surat Basin". Geological Survey of Queensland. 361 (35): 1–47 via ResearchGate.
  15. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Paten, R.J. (1967). "Microfloral distribution in the Lower Jurassic Evergreen Formation of the Boxvale area, Surat Basin,Queensland". Queensland Government Mining Journal. 68 (79): 345–349.
  16. 1 2 Cooling, Jennifer J.; and McKellar, John L. (2025-01-02). "Palynology of the Jurassic–Cretaceous transition, Surat Basin, Australia". Palynology. 49 (1): 2384509. doi:10.1080/01916122.2024.2384509. ISSN   0191-6122.

Further reading