Flocculus | |
---|---|
Details | |
Part of | Cerebellum |
System | Vestibular |
Artery | AICA |
Anatomical terms of neuroanatomy |
The flocculus (Latin: tuft of wool, diminutive) is a small lobe of the cerebellum at the posterior border of the middle cerebellar peduncle anterior to the biventer lobule. Like other parts of the cerebellum, the flocculus is involved in motor control. It is an essential part of the vestibulo-ocular reflex, and aids in the learning of basic motor skills in the brain.
It is associated with the nodulus of the vermis; together, these two structures compose the vestibular part of the cerebellum.
At its base, the flocculus receives input from the inner ear's vestibular system and regulates balance. Many floccular projections connect to the motor nuclei involved in control of eye movement.
The flocculus is contained within the flocculonodular lobe which is connected to the cerebellum. The cerebellum is the section of the brain that is essential for motor control. As a part of the cerebellum, the flocculus plays a part in the vestibulo-ocular reflex system, a system that controls the movement of the eye in coordination with movements of the head. [1] There are five separate “zones” in the flocculus and two halves, the caudal and rostral half.
The flocculus has a complex circuitry that is reflected in the structure of the zones and halves. These "zones" of the flocculus refer to five separate groupings of Purkinje cells that project to different areas of the brain. Depending upon where stimulus occurs in the flocculus, signals can be projected to very different parts of the brain. The first and third zones of the flocculus project to the superior vestibular nucleus, the second and fourth zones project to the medial vestibular nucleus, and the fifth zone projects to the interposed posterior nucleus, a part of the cerebellum. [2]
The anatomy of the flocculus shows that it is composed of two disjointed lobes or halves. The “halves” of the flocculus refer to the caudal half and the rostral half, and they indicate from where fiber projections are received and the path in which a signal travels. [3] The caudal half of the flocculus receives mossy fiber projections mainly from the vestibular system and tegmental pontine reticular nucleus, an area within the floor of the midbrain that affects the axonal projections or images received by the cerebellum. Vestibular inputs are also carried through climbing fibers that project into the flocculus, stimulating Purkinje cells. Leading research would suggest that climbing fibers play a specific role in motor learning. [4] The climbing fibers then send the image or projection to the part of the brain that receives electrical signals and generates movement. From the midbrain, corticopontine fibers carry information from the primary motor cortex. [1] From there, projections are sent to the ipsilateral pontine nucleus in the ventral pons, both of which are associated with projections to the cerebellum. Finally, pontocerebellar projections carry vestibulo-occular signals to the contralateral cerebellum via the middle cerebellar peduncle. [5] The rostral half of the flocculus also receives mossy fiber projections from the pontine nuclei; however, it receives very little projection from the vestibular system.
The flocculus is a part of the vestibulo-ocular reflex system and is used to help stabilize gaze during head rotation about any axis of space. Neurons in both the vermis of cerebellum and flocculus transmit an eye velocity signal that correlates with smooth pursuit.
The idea that the flocculus is involved in motor learning gave rise to the “flocculus hypothesis.” This hypothesis argues that the flocculus plays a key role in the vestibulo-ocular system, most importantly the ability for the vestibular system to adapt to a shift in the visual field. [3] The learning of basic motor skills, including walking, balancing, and the ability to sit up, can be attributed to early patterns and pathways associated with the vestibulo-ocular reflex (VOR) and the pathways formed in the cerebellum that contribute to the learning of basic motor skills. The flocculus appears to be included in a VOR pathway that aids in the adaptation to a repeated shift in the visual field. [4] A shift in the visual field affects an individual's spatial recognition. The leading research would suggest that the flocculus aids in the synchronization of eye and motor functions after a visual shift occurs in order for the visual field and the motor skills to function together. If this shift is repeated the flocculus essentially trains the brain to fully readjust to these repeated stimuli. [6]
Constituted by two disjointed-shaped lobes, the flocculus is positioned within the lowest level of the cerebellum. There are three main subdivisions in the cerebellum and the flocculus is contained within the most primitive the vestibulocerebellum. [1]
Its lobes are linked through a circuit of neurons connecting to the vermis, the medial structure in the cerebellum. Extensions leave the base of the follucular's lobes which then connect to the spinal cord. The cerebellum, which houses the flocculus, is located in the back and at the base of the human brain, directly above the brainstem. [7]
The flocculus is most important for the pursuit of movements with the eyes. Lesions in the flocculus impair control of the vestibulo-ocular reflex, and gaze holding also known as vestibulocerebellar syndrome. [8] The deficits observed in patients with lesions to this area resemble dose-dependent effects of alcohol on pursuit movements. [9] Bilateral lesions of the flocculus reduce the gain of smooth pursuit, which is the steady tracking of a moving object by the eyes. Instead, the bilateral lesions of the flocculus result in saccadic pursuit, in which smooth tracking is replaced by simultaneous rapid movements, or jerking motions, of the eye to follow an object toward the ipsilateral visual field. These lesions also impair the ability to hold the eyes in the eccentric position, resulting in gaze-evoked nystagmus toward the affected side of the cerebellum. [8] Nystagmus is the constant involuntary movements of the eyes; a patient can have either horizontal nystagmus (side-to-side eye movements), vertical nystagmus (up and down eye movements), or rotary nystagmus (circular eye movements). [8] The flocculus also plays a role in keeping the body oriented in space. A lesion in this area will result in ataxia, a neurological disorder that results in the deterioration of the coordination of muscle movements, and unsteady bodily movements such as swaying and staggering. [7]
The conditions and systems associated with floccular loss are considered to be a subset of a vestibular disease. Some symptoms of common vestibular diseases include: head tilting, an inability to stand, ataxia, dizziness, vomiting and strabismus. Because of the flocculus’ role in the vestibular system, the inner ear, equilibrioception, and both peripheral and central vision is affected by any loss or damage to the flocculus. These systems are affected because damage to the flocculus prevents any changes from being stored in regards to visual and motor communication, meaning that although the VOR is still intact these systems are unable to store changes in gain or eye movement as the head is rotated back and forth. [10]
This gallery of anatomic features needs cleanup to abide by the medical manual of style. |
The cerebellum is a major feature of the hindbrain of all vertebrates. Although usually smaller than the cerebrum, in some animals such as the mormyrid fishes it may be as large as it or even larger. In humans, the cerebellum plays an important role in motor control and cognitive functions such as attention and language as well as emotional control such as regulating fear and pleasure responses, but its movement-related functions are the most solidly established. The human cerebellum does not initiate movement, but contributes to coordination, precision, and accurate timing: it receives input from sensory systems of the spinal cord and from other parts of the brain, and integrates these inputs to fine-tune motor activity. Cerebellar damage produces disorders in fine movement, equilibrium, posture, and motor learning in humans.
The sense of balance or equilibrioception is the perception of balance and spatial orientation. It helps prevent humans and nonhuman animals from falling over when standing or moving. Equilibrioception is the result of a number of sensory systems working together; the eyes, the inner ears, and the body's sense of where it is in space (proprioception) ideally need to be intact.
The brainstem is the posterior stalk-like part of the brain that connects the cerebrum with the spinal cord. In the human brain the brainstem is composed of the midbrain, the pons, and the medulla oblongata. The midbrain is continuous with the thalamus of the diencephalon through the tentorial notch, and sometimes the diencephalon is included in the brainstem.
The vestibulo-ocular reflex (VOR) is a reflex that acts to stabilize gaze during head movement, with eye movement due to activation of the vestibular system, it is also known as the Cervico-ocular reflex. The reflex acts to stabilize images on the retinas of the eye during head movement. Gaze is held steadily on a location by producing eye movements in the direction opposite that of head movement. For example, when the head moves to the right, the eyes move to the left, meaning the image a person sees stays the same even though the head has turned. Since slight head movement is present all the time, VOR is necessary for stabilizing vision: people with an impaired reflex find it difficult to read using print, because the eyes do not stabilise during small head tremors, and also because damage to reflex can cause nystagmus.
Eyeblink conditioning (EBC) is a form of classical conditioning that has been used extensively to study neural structures and mechanisms that underlie learning and memory. The procedure is relatively simple and usually consists of pairing an auditory or visual stimulus with an eyeblink-eliciting unconditioned stimulus (US). Naïve organisms initially produce a reflexive, unconditioned response (UR) that follows US onset. After many CS-US pairings, an association is formed such that a learned blink, or conditioned response (CR), occurs and precedes US onset. The magnitude of learning is generally gauged by the percentage of all paired CS-US trials that result in a CR. Under optimal conditions, well-trained animals produce a high percentage of CRs. The conditions necessary for, and the physiological mechanisms that govern, eyeblink CR learning have been studied across many mammalian species, including mice, rats, guinea pigs, rabbits, ferrets, cats, and humans. Historically, rabbits have been the most popular research subjects.
The medial longitudinal fasciculus (MLF) is a prominent bundle of nerve fibres which pass within the ventral/anterior portion of periaqueductal gray of the mesencephalon (midbrain). It contains the interstitial nucleus of Cajal, responsible for oculomotor control, head posture, and vertical eye movement.
The inferior olivary nucleus (ION) is a structure found in the medulla oblongata underneath the superior olivary nucleus. In vertebrates, the ION is known to coordinate signals from the spinal cord to the cerebellum to regulate motor coordination and learning. These connections have been shown to be tightly associated, as degeneration of either the cerebellum or the ION results in degeneration of the other.
The cerebellar vermis is located in the medial, cortico-nuclear zone of the cerebellum, which is in the posterior fossa of the cranium. The primary fissure in the vermis curves ventrolaterally to the superior surface of the cerebellum, dividing it into anterior and posterior lobes. Functionally, the vermis is associated with bodily posture and locomotion. The vermis is included within the spinocerebellum and receives somatic sensory input from the head and proximal body parts via ascending spinal pathways.
Oscillopsia is a visual disturbance in which objects in the visual field appear to oscillate. The severity of the effect may range from a mild blurring to rapid and periodic jumping. Oscillopsia is an incapacitating condition experienced by many patients with neurological disorders. It may be the result of ocular instability occurring after the oculomotor system is affected, no longer holding images steady on the retina. A change in the magnitude of the vestibulo-ocular reflex due to vestibular disease can also lead to oscillopsia during rapid head movements. Oscillopsia may also be caused by involuntary eye movements such as nystagmus, or impaired coordination in the visual cortex and is one of the symptoms of superior canal dehiscence syndrome. Those affected may experience dizziness and nausea. Oscillopsia can also be used as a quantitative test to document aminoglycoside toxicity. Permanent oscillopsia can arise from an impairment of the ocular system that serves to maintain ocular stability. Paroxysmal oscillopsia can be due to an abnormal hyperactivity in the peripheral ocular or vestibular system.
The dentate nucleus is a cluster of neurons, or nerve cells, in the central nervous system that has a dentate – tooth-like or serrated – edge. It is located within the deep white matter of each cerebellar hemisphere, and it is the largest single structure linking the cerebellum to the rest of the brain. It is the largest and most lateral, or farthest from the midline, of the four pairs of deep cerebellar nuclei, the others being the globose and emboliform nuclei, which together are referred to as the interposed nucleus, and the fastigial nucleus.
The flocculonodular lobe (vestibulocerebellum) is one of the lobes of the cerebellum. It is a small lobe consisting of the unpaired midline nodule and the two flocculi: one flocculus on either side of the nodule. The lobe is involved in maintaining posture and balance as well as coordinating head-eye movements.
In the scientific study of vision, smooth pursuit describes a type of eye movement in which the eyes remain fixated on a moving object. It is one of two ways that visual animals can voluntarily shift gaze, the other being saccadic eye movements. Pursuit differs from the vestibulo-ocular reflex, which only occurs during movements of the head and serves to stabilize gaze on a stationary object. Most people are unable to initiate pursuit without a moving visual signal. The pursuit of targets moving with velocities of greater than 30°/s tends to require catch-up saccades. Smooth pursuit is asymmetric: most humans and primates tend to be better at horizontal than vertical smooth pursuit, as defined by their ability to pursue smoothly without making catch-up saccades. Most humans are also better at downward than upward pursuit. Pursuit is modified by ongoing visual feedback.
The paramedian pontine reticular formation (PPRF) is a subset of neurons of the oral and caudal pontine reticular nuclei. With the abducens nucleus it makes up the horizontal gaze centre. It is situated in the pons adjacent to the abducens nucleus. It projects to the ipsilateral abducens nucleus, and contralateral oculomotor nucleus to mediate conjugate horizontal gaze and saccades.
The vestibulospinal tract is a nerve tract in the central nervous system. Specifically, it is a component of the extrapyramidal system and is classified as a component of the medial pathway. Like other descending motor pathways, the vestibulospinal fibers of the tract relay information from nuclei to motor neurons. The vestibular nuclei receive information through the vestibulocochlear nerve about changes in the orientation of the head. The nuclei relay motor commands through the vestibulospinal tract. The function of these motor commands is to alter muscle tone, extend, and change the position of the limbs and head with the goal of supporting posture and maintaining balance of the body and head.
The reticulotegmental nucleus, tegmental pontine reticular nucleus is an area within the floor of the pons, in the brain stem. This area is known to affect the cerebellum with its axonal projections.
The juxtarestiform body is the smaller, medial subdivision of each inferior cerebellar peduncle.
The pontocerebellar fibers are the second-order neuron fibers of the corticopontocerebellar tracts that cross to the other side of the pons and run within the middle cerebellar peduncles, from the pons to the contralateral cerebellum. They arise from the pontine nuclei as the second part of the corticopontocerebellar tract, and decussate (cross-over) in the pons before passing through the middle cerebellar peduncles to reach and terminate in the contralateral posterior lobe of the cerebellum (neocerebellum). It is part of a pathway involved in the coordination of voluntary movements.
The Anatomy of the Cerebellum can be viewed at three levels. At the level of gross anatomy, the cerebellum consists of a tightly folded and crumpled layer of cortex, with white matter underneath, several deep nuclei embedded in the white matter, and a fluid-filled ventricle in the middle. At the intermediate level, the cerebellum and its auxiliary structures can be broken down into several hundred or thousand independently functioning modules or compartments known as microzones. At the microscopic level, each module consists of the same small set of neuronal elements, laid out with a highly stereotyped geometry.
Vestibulocerebellar syndrome, also known as vestibulocerebellar ataxia, is a progressive neurological disorder that causes a variety of medical problems. Initially symptoms present as periodic attacks of abnormal eye movements but may intensify to longer-lasting motor incapacity. The disorder has been localized to the vestibulocerebellum, specifically the flocculonodular lobe. Symptoms of vestibulocerebellar syndrome may appear in early childhood but the full onset of neurological symptoms including nystagmus, ataxia, and tinnitus does not occur until early adulthood. To date, vestibulocerebellar syndrome has only been identified in three families but has affected multiple generations within them. Based on the familial pedigrees it has been characterized as an autosomal dominant disorder, although the exact genetic locus has not been identified. It has been found to be genetically distinct from other seemingly similar forms of neurological syndromes such as episodic ataxia types 1 and 2. Due to its rarity, however, little is known about specific details of the pathology or long-term treatment options. There is currently no cure for vestibulocerebellar syndrome, although some drug therapies have been effective in alleviating particular symptoms of the disorder.
Cerebellar cognitive affective syndrome (CCAS), also called Schmahmann's syndrome is a condition that follows from lesions (damage) to the cerebellum of the brain. It refers to a constellation of deficits in the cognitive domains of executive function, spatial cognition, language, and affect resulting from damage to the cerebellum. Impairments of executive function include problems with planning, set-shifting, abstract reasoning, verbal fluency, and working memory, and there is often perseveration, distractibility and inattention. Language problems include dysprosodia, agrammatism and mild anomia. Deficits in spatial cognition produce visual–spatial disorganization and impaired visual–spatial memory. Personality changes manifest as blunting of affect or disinhibited and inappropriate behavior. These cognitive impairments result in an overall lowering of intellectual function. CCAS challenges the traditional view of the cerebellum being responsible solely for regulation of motor functions. It is now thought that the cerebellum is responsible for monitoring both motor and nonmotor functions. The nonmotor deficits described in CCAS are believed to be caused by dysfunction in cerebellar connections to the cerebral cortex and limbic system.