GG45

Last updated

GG45 (GigaGate 45) and ARJ45 (Augmented RJ45) are two related connectors for Category 7, Category 7A, and Category 8 telecommunication cabling. The GG45 interface and related implementations are developed and sold by Nexans S.A., while the ARJ45 interface and related implementations are developed and sold by Bel Fuse Inc. The electrical performance of each is compliant with IEC 61076-3-110, as published by the International Electrotechnical Commission. [1] Furthermore, the ARJ45 connector meets the mechanical dimensions specified in IEC 61076-3-110.

Contents

Details

The GG45 and ARJ45 connectors operate in the frequency band between 600 MHz and 5 GHz with shielded twisted pair and twinax cables. To reduce crosstalk, two of the four pairs have been moved so that each pair occupies one corner.

GG45 is a variant of ARJ45 that allows for cables terminated with male 8P8C (AKA RJ45) connectors to be plugged into GG45 jacks. However, GG45 cables cannot plug into 8P8C jacks as a protrusion on the socket is designed to activate a switch on the jack for the alternative contact positions. [2]

Combined with an internal system of Faraday cages, the GG45 interface therefore has plenty of headroom, plus the ability to migrate to higher speed service by upgrading to Category 7A patch cords that activate the switch in the jack. [3]

There are two main variants of GG45/ARJ45:

   1 2 3 4 5 6 7 8  |‾‾█‾█‾█‾█‾█‾█‾█‾█‾‾|     Pinout of GG45 and ARJ45 HD sockets. The protrusion ▒▒▒ |                   |     activates a switch, redirecting the 3-6 and 4-5 pairs to |                   |     the corners on a GG45 jack (3′ and 6′, and 4′ and 5′). |_█_█____▒▒▒____█_█_|   3′6′  |   |   4′5′      ARJ45 HS omits the Cat-6–compatible 3-6 and 4-5 pairs.          |_|           

See also

Related Research Articles

<span class="mw-page-title-main">Ethernet over twisted pair</span> Ethernet physical layers using twisted-pair cables

Ethernet over twisted-pair technologies use twisted-pair cables for the physical layer of an Ethernet computer network. They are a subset of all Ethernet physical layers.

<span class="mw-page-title-main">Category 5 cable</span> Unshielded twisted pair communications cable

Category 5 cable (Cat 5) is a twisted pair cable for computer networks. Since 2001, the variant commonly in use is the Category 5e specification (Cat 5e). The cable standard provides performance of up to 100 MHz and is suitable for most varieties of Ethernet over twisted pair up to 2.5GBASE-T but more commonly runs at 1000BASE-T speeds. Cat 5 is also used to carry other signals such as telephone and video.

<span class="mw-page-title-main">Electrical connector</span> Device used to join electrical conductors

Components of an electrical circuit are electrically connected if an electric current can run between them through an electrical conductor. An electrical connector is an electromechanical device used to create an electrical connection between parts of an electrical circuit, or between different electrical circuits, thereby joining them into a larger circuit.

<span class="mw-page-title-main">Phone connector (audio)</span> Family of connectors typically used for analog signals

A phone connector is a family of cylindrically-shaped electrical connectors primarily for analog audio signals. Invented in the late 19th century for telephone switchboards, the phone connector remains in use for interfacing wired audio equipment, such as headphones, speakers, microphones, mixing consoles, and electronic musical instruments. A male connector, is mated into a female connector, though other terminology is used.

<span class="mw-page-title-main">Registered jack</span> Telecommunication network interface

A registered jack (RJ) is a standardized telecommunication network interface for connecting voice and data equipment to a service provided by a local exchange carrier or long distance carrier. Registered interfaces were first defined in the Universal Service Ordering Code (USOC) system of the Bell System in the United States for complying with the registration program for customer-supplied telephone equipment mandated by the Federal Communications Commission (FCC) in the 1970s. They were subsequently codified in title 47 of the Code of Federal Regulations Part 68. Registered jack connections began to see use after their invention in 1973 by Bell Labs. The specification includes physical construction, wiring, and signal semantics. Accordingly, registered jacks are primarily named by the letters RJ, followed by two digits that express the type. Additional letter suffixes indicate minor variations. For example, RJ11, RJ14, and RJ25 are the most commonly used interfaces for telephone connections for one-, two-, and three-line service, respectively. Although these standards are legal definitions in the United States, some interfaces are used worldwide.

<span class="mw-page-title-main">DIN connector</span> Electrical connector

The DIN connector is an electrical connector that was standardized by the Deutsches Institut für Normung (DIN), the German Institute for Standards, in the mid 1950's, initially with 3 pins for mono, but when stereo connections and gear appeared in late 1950's, versions with 5 pins or more were launched. The male DIN connectors (plugs) feature a 13.2 mm diameter metal shield with a notch that limits the orientation in which plug and socket can mate. The range of DIN connectors, different only in the configuration of the pins, have been standardized as DIN 41524 / IEC/DIN EN 60130-9 ; DIN 45322 ; DIN 45329 / IEC/DIN EN 60130–9 ; and DIN 45326 / IEC/DIN EN 60130-9.

<span class="mw-page-title-main">Telephone jack and plug</span> Connectors for wiring of telephone equipment

A telephone jack and a telephone plug are electrical connectors for connecting a telephone set or other telecommunications apparatus to the telephone wiring inside a building, establishing a connection to a telephone network. The plug is inserted into its counterpart, the jack, which is commonly affixed to a wall or baseboard. The standards for telephone jacks and plugs vary from country to country, though the 6P2C style modular plug has become by far the most common type.

<span class="mw-page-title-main">IEC 60309</span> International standard for industrial plugs

IEC 60309 is a series of international standards from the International Electrotechnical Commission (IEC) for "plugs, socket-outlets and couplers for industrial purposes". They are also referred to as "pin & sleeve" connectors in North America or as "CeeForm" connectors in the entertainment industry. The maximum voltage allowed by the standard is 1000 V DC or AC; the maximum current, 800 A; and the maximum frequency, 500 Hz. The ambient temperature range is −25 °C to 40 °C.

<span class="mw-page-title-main">Swedish telephone plugs & sockets</span> Type of plug

A standard Swedish telephone plug carries one telephone line and has four flat metal pins and one plastic pin. The design is only used by Televerket in Sweden and older Póstur og Sími installations in Iceland. Neither plug nor socket is compatible with other plugs and sockets. It is defined in Swedish Standard SS 455 15 50.

<span class="mw-page-title-main">Structured cabling</span> Telecommunications cabling infrastructure

In telecommunications, structured cabling is building or campus cabling infrastructure that consists of a number of standardized smaller elements called subsystems. Structured cabling components include twisted pair and optical cabling, patch panels and patch cables.

<span class="mw-page-title-main">Category 6 cable</span> Standardized data communications cable

Category 6 cable (Cat 6) is a standardized twisted pair cable for Ethernet and other network physical layers that is backward compatible with the Category 5/5e and Category 3 cable standards.

International standard ISO/IEC 11801Information technology — Generic cabling for customer premises specifies general-purpose telecommunication cabling systems that are suitable for a wide range of applications. It is published by ISO/IEC JTC 1/SC 25/WG 3 of the International Organization for Standardization (ISO) and the International Electrotechnical Commission (IEC). It covers both balanced copper cabling and optical fibre cabling.

<span class="mw-page-title-main">TERA</span> Shielded twisted pair connector

TERA is a shielded twisted pair connector for use with Category 7 twisted-pair data cables, developed by The Siemon Company and standardised in 2003 by the International Electrotechnical Commission (IEC) with the reference IEC 61076–3–104. The 2006 revision of the standard extended the characterised performance up to 1000 MHz. The connector has a different footprint from the more common 8P8C connector.

<span class="mw-page-title-main">Modular connector</span> Electrical connector commonly used in telephone and computer networks

A modular connector is a type of electrical connector for cords and cables of electronic devices and appliances, such as in computer networking, telecommunication equipment, and audio headsets.

In copper twisted pair wire networks, copper cable certification is achieved through a thorough series of tests in accordance with Telecommunications Industry Association (TIA) or International Organization for Standardization (ISO) standards. These tests are done using a certification-testing tool, which provide pass or fail information. While certification can be performed by the owner of the network, certification is primarily done by datacom contractors. It is this certification that allows the contractors to warranty their work.

<span class="mw-page-title-main">Coaxial power connector</span> Type of electrical power connector

A coaxial power connector is an electrical power connector used for attaching extra-low voltage devices such as consumer electronics to external electricity. Also known as barrel connectors, concentric barrel connectors or tip connectors, these small cylindrical connectors come in an enormous variety of sizes.

<span class="mw-page-title-main">British telephone socket</span>

British telephone sockets were introduced in their current plug and socket form on 19 November 1981 by British Telecom to allow subscribers to connect their own telephones. The connectors are specified in British Standard BS 6312. Electrical characteristics of the telephone interface are specified by individual network operators, e.g. in British Telecom's SIN 351. Electrical characteristics required of British telephones used to be specified in BS 6305.

ANSI/TIA-568 is a technical standard for commercial building cabling for telecommunications products and services. The title of the standard is Commercial Building Telecommunications Cabling Standard and is published by the Telecommunications Industry Association (TIA), a body accredited by the American National Standards Institute (ANSI).

The EtherCON is a ruggedized and lockable connector for Ethernet over twisted pair wiring. It is manufactured by Neutrik and is designed for professional audio and stage lighting network applications.

<span class="mw-page-title-main">IEC metric screw sized connectors</span>

IEC metric screw sized connectors is a family of electrical connectors defined by IEC that are named according to their ISO metric screw thread, namely M5, M8 and M12. The number gives their outer screw thread diameter in millimeters as with the identically named screws. However, the connectors are further classified by a so-called coding, denoted by one or more letters, which defines things like pin layout, shape of connecting surfaces and electrical properties.

References

  1. IEC Webstore: International standard IEC 61076-3-110 Connectors for electronic equipment - Product requirements - Part 3-110: Rectangular connectors — Detail specification for shielded, free and fixed connectors for data transmissions with frequencies up to 1000MHz, Edition 1.0, December 2007; ( (in English and French) "Preview" (PDF). (217 KB))
  2. "Category 8 Cabling Standards Update" (PDF). Commscope Technical Content Portal. CommScope. 2013. Archived from the original on 2017-07-26. Retrieved 2021-10-17.
  3. "Twisted-pair connectors continue technological evolution". November 1, 2008. Archived from the original on 2011-07-08., section A step further