Megaherbivore

Last updated

Hippopotamus is an extant megaherbivore. Hippo (Hippopotamus amphibius) (16485955207).jpg
Hippopotamus is an extant megaherbivore.

Megaherbivores (Greek μέγας megas "large" and Latin herbivora "herbivore" [1] ) are large herbivores that can exceed 1,000 kg (2,200 lb) in weight. They first appeared 300 million years ago in the early Permian, in the form of synapsids. They were then replaced by megaherbivorous dinosaurs that went extinct in the Cretaceous-Paleogene extinction event. After this period, small mammalian species evolved into large herbivores in the Paleogene. During the Quaternary Extinction Event, megaherbivores disappeared on most continents on Earth. Recent megaherbivores include elephants, rhinos, hippos, and giraffes. There are nine extant species of terrestrial megaherbivores living in Africa and Asia. The African bush elephant is the largest extant species.

Contents

Extant megaherbivores are keystone species in their environment. They defoliate the landscape and spread a greater number of seeds than other frugivores. Extant megaherbivores, like most large mammals, are K-selected species. They are characterized by their large size, relative immunity to predation, their effect on plant species, and their dietary tolerance.

Definition

Megaherbivores are large herbivores that weigh more than 1 ton when fully grown. [2] They also include large marine herbivores. [1] They are a type of megafauna (>45 kg), and are the largest animals on land. [3]

Evolution

Permian

Dinodontosaurus skeleton Dinodontosaurus skeleton UFRGS.jpg
Dinodontosaurus skeleton

Megaherbivores first evolved in the early Permian (300 mya). [4] The earliest megaherbivores were synapsids; they became somewhat rare after the Permian–Triassic extinction event. [5] [6] Taxa included dicynodonts such as Dinodontosaurus . [7] Pareiasaurs were other large herbivores present during this time. [8] The exact cause of the extinction remain unknown. It is thought that the main cause of extinction was the flood basalt volcanic eruptions that created the Siberian Traps, [9] which released sulfur dioxide and carbon dioxide, resulting in euxinia, [10] elevating global temperatures, [11] and acidifying the oceans. [12]

Triassic

Lisowicia was the last dicynodont that lived and became extinct in the Late Triassic. [5] Some scientists have proposed that there was never a Triassic–Jurassic extinction event, but others argue that the extinctions may have occurred earlier. Flood basalts are thought to be the primary driver of the extinctions, towards the end of the Triassic. [13] [14]

Amniota
Synapsida

Dicynodontia (Permian, Triassic) Dicynodont from PolandDB.jpg

Mammals (small, until Paleogene)

Sauropsida

Pareiasauria (Permian) Scutosaurus BW flipped.jpg

Dinosauria (small, until Jurassic)

Jurassic

The taxonomic structure then switched to sauropodomorphs. Other taxa included stegosaurs and ankylosaurs. [15] The change in taxonomy approximately occurred at the same time with the divergence of predominant vegetation and with extinctions. New taxa may have caused competitive exclusion (i.e. predominating and removing another taxa), or they may have adopted the ecological niche of extinct groups. [4] [16]

Cretaceous

From the Triassic to the Cretaceous, a diverse assemblage of megaherbivorous dinosaurs, such as sauropods, [17] occupied different ecological niches. Based on their dentition, ankylosaurs may have mainly consumed succulent plants, as opposed to nodosaurs, which were mainly browsers. It is thought that ceratopsids fed on rugged vegetation, due to their jaw being designed for a crushing effect. Studies on hadrosaur dentition concluded that they primarily fed on fruits. [18]

Paleogene

Skeleton of Paraceratherium, a rhinocerotoid Paleontologicheskii muzei Orlova (20221008151051).jpg
Skeleton of Paraceratherium , a rhinocerotoid

Following the Cretaceous-Paleogene mass extinction, megaherbivore dinosaurs were extirpated from the face of the earth. One mechanism is thought to have played a major role: an extraterrestrial impact event in the Yucatán Peninsula. [19] For about 25 million years, the earth was void of large terrestrial herbivores that weighed more than 1 tonne. After this period, small mammalian species evolved into large herbivores. Herbivorous mammals had evolved to megaherbivore size across every continent around 40 mya. [2] The largest of these animals were Paraceratheriidae and Proboscidea . [20] Other taxa included Brontotheriidae . [21] The Sirenia, aquatic megaherbivores, such as Dugongidae , Protosirenidae , and Prorastomidae were present in the Eocene. [22] They inhabited every major landmass in the Cenozoic and Pleistocene before the arrival of humans. [4]

Pleistocene

There were around 50 different species by the Late Pleistocene: [3]

Diprotodon was present across the entire Australian continent by the Late Pleistocene. [23] Glyptodonts were grazing herbivores. Like many other xenarthrans, they had no incisor or canine teeth, but had cheek teeth that would have been able to grind up tough vegetation. [24] Ground sloths were herbivores, with some being browsers, [25] others grazers, [26] and some intermediate between the two as mixed feeders. [27] Mammoths, like modern day elephants, have hypsodont molars. These features also allowed mammoths to live an expansive life because of the availability of grasses and trees. [28]

Today, nine of the 50 species persist. The Americas saw the worst decline in megaherbivores, with all 27 species going extinct. [3]

The Quaternary Extinction Event is an event where many species of megafauna (particularly mammals) went extinct. This event caused the disappearance of megaherbivores on most continents on Earth. [29] Climate change and the arrival of humans could be the causes of the extinctions. [30] It is thought that humans hunted megaherbivores to extinction, which then led to the extinction of the carnivores and scavengers which had preyed upon those animals. [31] [32] [33] Scientists have proposed that increasingly extreme weather—hotter summers and colder winters—referred to as "continentality", or related changes in rainfall caused the extinctions. [34]

Recent

There are nine extant species of megaherbivores, found in Africa and Asia. [35] [36] They include elephants, rhinos, hippos and giraffes. [35] [37] :1 [38] Elephants belong to the order Proboscidea, that has been around since the late Paleocene. [39] Hippopotamuses are the closest living relatives to cetaceans. Soon after the common ancestor of whales and hippos diverged from even-toed ungulates, the lineages of cetaceans and hippopotamuses split apart. [40] [41] Giraffidae are a sister taxon to Antilocapridae, with an estimated split of more than 20 million years ago, according to a 2019 genome study. [42] Rhinoceroses may originate from Hyrachyus , an animal whose remains dates back to the late Eocene. [37] :17

Megaherbivores and other large herbivores are becoming less common throughout their natural distribution, which is having an impact on animal species within the ecosystem. This is mainly attributed to the destruction of their natural environment, agriculture, overhunting, and human invasion of their habitats. [43] [44] As a consequence of their slow reproductive rate and the preference for targeting larger species, overexploitation poses the greatest threat to megaherbivores. As time progresses, it is thought that the situation will only grow worse. [43]

Ecology of recent megaherbivory

Browsers and grazers

Living species exhibit the following adaptations: they have dietary tolerance, have a strong effect on vegetation and with the exception of calves, they face little threat from predators. [45] [46] [47]

Elephants and Indian rhinoceroses exhibit both grazing and browsing feeding habits. The hippopotamus and white rhinoceros prefer grazing herbivory, while giraffes and the three other rhinoceros species most often select browsing herbivory. [48] Mammalian megaherbivores predominantly consume graminoids. They prefer eating the leaves and stem of the plant, as well as its fruits. They also exhibit both foregut and hindgut fermentation, with rhinos, hippos, and elephants displaying the former and giraffes displaying the latter. [37] :16

Due to their size, megaherbivores can defoliate the landscape. Because of this, they are considered keystone species in their environment. [49] Megaherbivores affect the composition of plant species, which alters the movement and exchange of inorganic and organic matter back into the production of matter. They can open up areas through feeding behavior, which over time clears vegetation. The number of seeds that megaherbivores spread is greater than that of other frugivores. [4] Megaherbivore grazers, like the white rhino, have a profound impact on short grass. In one study, short grass became more infrequent after the elimination of white rhinos, affecting smaller grazers in the process. [48] Their metabolic rate is lethargic, and as a result, digestion is slowed. During this prolonged digestion period, high-fiber plant matter is disintegrated. [38]

In a 2018 study, it was concluded that megaherbivores were not affected by the "landscape of fear," a landscape in which prey avoid certain hot-spot predation areas, thereby altering predator-frightened trophic cascades. Their feces were most apparent in closed, dense areas, indicating that they distribute resources to risky areas in this "landscape of fear". [50]

Interspecific interactions

Most megaherbivore species are too big and powerful for most predators to kill. [38] Calves are, however, targeted by several predator species. [37] :158 Giraffes are susceptible to predation, and it's not rare for lions and spotted hyenas to hunt adult giraffes in some places. The young are especially vulnerable, with a quarter to half of giraffe calves not reaching adulthood. [51] [52] In Chobe National Park, lions have been recorded hunting young and sub-adult elephants. [53] Tigers are another known predator of young elephants. [54] Hippo calves may sometimes be prey items for lions, spotted hyenas and Nile crocodiles. [55]

Giraffes may flee or act in a non-aggressive manner, while white rhinos typically do not react to the presence of predators. Black and Indian rhinoceroses, elephants, and hippopotamuses react strongly to predators. [37] :124–131

Adaptations of extant megaherbivores

Size

Elephants are the largest members, weighing between 2.5–6.0 tons. Indian rhinos, white rhinos and hippos usually weigh between 1.4–2.3 tons. The Javan and black rhino average 1–1.3 tons in weight. Giraffes are the smallest members, with a general weight range of 0.8–1.2 tons. [37] :14 [56]

K-selection

Extant megaherbivores are K-selected species, meaning they have high life expectancies, slow population growth, large offspring, lengthy pregnancies, and low mortality rates. They have selected slow reproduction to enhance their survival chances, and as a result, increase their lifespan. [57] [58] Their large size offers protection from predators, but at the same, it decreases the degree at which they reproduce due to restricted food sources. [59] [60] Due to their slow population growth (elephants, for example, grow at a rate of 6–7%), populations may be drastically reduced if the population growth rate is not greater than the rate of predation. [37] :293 In stable environments, K-selection predominates as the ability to compete successfully for limited resources, and populations of K-selected organisms typically are very constant in number and close to the maximum that the environment can bear. [59] [37] :200 Due to the effects of human activity, population densities are currently sparse. [37] :21

Reproduction

Giraffe calves don't stay with their mothers, they sit down and hide for most of the day, and their mothers briefly visit to feed them. Giraffes (Giraffa camelopardalis) female and calf (14007572496).jpg
Giraffe calves don't stay with their mothers, they sit down and hide for most of the day, and their mothers briefly visit to feed them.
Black rhino calves are vulnerable to predators, and stay close to their mothers for safety for 26 to 40 months. Black Rhinos Kenya.jpg
Black rhino calves are vulnerable to predators, and stay close to their mothers for safety for 26 to 40 months.

When females enter estrus, males will attempt to attract and mate with them. Breeding opportunities may be influenced by the hierarchical system of males. Giraffes and elephants mate for a relatively short time, while rhinos and hippos have a mating session lasting an extended period of time. Females have long gestation periods, between 8 and 22 months. Intervals between births vary between species, but the overall range is 1.3 to 4.5 years. [37] :116–124

They usually give birth to a single calf. Calves are born helpless and heavily rely on females for food and protection. As they get older, the calf begins weaning while still suckling. When they reach juvenility, they are able to fend for themselves, but only to a certain extent. Females typically separate from their offspring by chasing them. Despite this, females may continue to interact with their progeny even after weaning. [37] :133

Lifespan and mortality

Hippopotamuses and rhinoceroses can live to be 40 years old, while elephants can live longer than 60 years. [52] Giraffes have a lifespan of around 25 years. [37] :158

Around 2 to 5% of adult megaherbivores die each year. Males are more likely than females to die from wounds sustained during disputes. Giraffes are the most preyed-upon megaherbivore species. Occasionally, in times of drought, populations may significantly reduce, with calves being the most impacted. [37] :158

See also

Related Research Articles

<span class="mw-page-title-main">Cenozoic</span> Third era of the Phanerozoic Eon

The Cenozoic is Earth's current geological era, representing the last 66 million years of Earth's history. It is characterised by the dominance of mammals, birds, and angiosperms. It is the latest of three geological eras, preceded by the Mesozoic and Paleozoic. The Cenozoic started with the Cretaceous–Paleogene extinction event, when many species, including the non-avian dinosaurs, became extinct in an event attributed by most experts to the impact of a large asteroid or other celestial body, the Chicxulub impactor.

<span class="mw-page-title-main">Dinosaur</span> Archosaurian reptiles that dominated the Mesozoic Era

Dinosaurs are a diverse group of reptiles of the clade Dinosauria. They first appeared during the Triassic period, between 243 and 233.23 million years ago (mya), although the exact origin and timing of the evolution of dinosaurs is a subject of active research. They became the dominant terrestrial vertebrates after the Triassic–Jurassic extinction event 201.3 mya and their dominance continued throughout the Jurassic and Cretaceous periods. The fossil record shows that birds are feathered dinosaurs, having evolved from earlier theropods during the Late Jurassic epoch, and are the only dinosaur lineage known to have survived the Cretaceous–Paleogene extinction event approximately 66 mya. Dinosaurs can therefore be divided into avian dinosaurs—birds—and the extinct non-avian dinosaurs, which are all dinosaurs other than birds.

<span class="mw-page-title-main">Holocene extinction</span> Ongoing extinction event caused by human activity

The Holocene extinction, or Anthropocene extinction, is the ongoing extinction event caused by humans during the Holocene epoch. These extinctions span numerous families of plants and animals, including mammals, birds, reptiles, amphibians, fish, and invertebrates, and affecting not just terrestrial species but also large sectors of marine life. With widespread degradation of biodiversity hotspots, such as coral reefs and rainforests, as well as other areas, the vast majority of these extinctions are thought to be undocumented, as the species are undiscovered at the time of their extinction, which goes unrecorded. The current rate of extinction of species is estimated at 100 to 1,000 times higher than natural background extinction rates and is increasing. During the past 100–200 years, biodiversity loss and species extinction have accelerated, to the point that most conservation biologists now believe that human activity has either produced a period of mass extinction, or is on the cusp of doing so. As such, after the "Big Five" mass extinctions, the Holocene extinction event has also been referred to as the sixth mass extinction or sixth extinction; given the recent recognition of the Capitanian mass extinction, the term seventh mass extinction has also been proposed for the Holocene extinction event.

The Phanerozoic is the current and the latest of the four geologic eons in the Earth's geologic time scale, covering the time period from 538.8 million years ago to the present. It is the eon during which abundant animal and plant life has proliferated, diversified and colonized various niches on the Earth's surface, beginning with the Cambrian period when animals first developed hard shells that can be clearly preserved in the fossil record. The time before the Phanerozoic, collectively called the Precambrian, is now divided into the Hadean, Archaean and Proterozoic eons.

<span class="mw-page-title-main">Triassic</span> First period of the Mesozoic Era 252–201 million years ago

The Triassic is a geologic period and system which spans 50.5 million years from the end of the Permian Period 251.902 million years ago (Mya), to the beginning of the Jurassic Period 201.4 Mya. The Triassic is the first and shortest period of the Mesozoic Era. Both the start and end of the period are marked by major extinction events. The Triassic Period is subdivided into three epochs: Early Triassic, Middle Triassic and Late Triassic.

<span class="mw-page-title-main">Hippopotamus</span> Large semi-aquatic mammal native to sub-Saharan Africa

The hippopotamus, also shortened to hippo, further qualified as the common hippopotamus, Nile hippopotamus, or river hippopotamus, is a large semiaquatic mammal native to sub-Saharan Africa. It is one of only two extant species in the family Hippopotamidae, the other being the pygmy hippopotamus. Its name comes from the ancient Greek for "river horse" (ἱπποπόταμος).

<span class="mw-page-title-main">Megafauna</span> Large animals

In zoology, megafauna are large animals. The most common thresholds to be a megafauna are weighing over 45 kg (99 lb) or weighing over 1,000 kg (2,200 lb). The first occurrence of the term was in 1876. After the Cretaceous–Paleogene extinction event wiped out all non-avian dinosaurs, mammals and other vertebrates experienced an expansion in size. Millions of years of evolution led to gigantism on every major land mass. During the Quaternary extinction event, many species of megafauna went extinct as part of a slowly progressing extinction wave that effected ecosystems worldwide.

<span class="mw-page-title-main">Elephant bird</span> Extinct order of birds

Elephant birds are extinct flightless birds belonging to the order Aepyornithiformes that were native to the island of Madagascar. They are thought to have become extinct around AD 1000, likely as a result of human activity. Elephant birds comprised three species, one in the genus Mullerornis, and two in Aepyornis.Aepyornis maximus is possibly the largest bird to have ever lived, with their eggs being the largest known for any amniote. Elephant birds are palaeognaths, and their closest living relatives are kiwi, suggesting that ratites did not diversify by vicariance during the breakup of Gondwana but instead convergently evolved flightlessness from ancestors that dispersed more recently by flying.

<span class="mw-page-title-main">Woolly rhinoceros</span> Extinct species of rhinoceros of northern Eurasia

The woolly rhinoceros, simply known as woolly rhino, is an extinct species of rhinoceros that inhabited northern Eurasia during the Pleistocene epoch. The woolly rhinoceros was a member of the Pleistocene megafauna. The woolly rhinoceros was covered with long, thick hair that allowed it to survive in the extremely cold, harsh mammoth steppe. It had a massive hump reaching from its shoulder and fed mainly on herbaceous plants that grew in the steppe. Mummified carcasses preserved in permafrost and many bone remains of woolly rhinoceroses have been found. Images of woolly rhinoceroses are found among cave paintings in Europe and Asia. The species range contracted towards Siberia beginning around 17,000 years ago, with the youngest known records being around 14,000 years old in northeast Siberia, coinciding with the Bølling–Allerød warming, which likely disrupted its habitat.

<span class="mw-page-title-main">Sauropodomorpha</span> Extinct clade of dinosaurs

Sauropodomorpha is an extinct clade of long-necked, herbivorous, saurischian dinosaurs that includes the sauropods and their ancestral relatives. Sauropods generally grew to very large sizes, had long necks and tails, were quadrupedal, and became the largest animals to ever walk the Earth. The prosauropods, which preceded the sauropods, were smaller and were often able to walk on two legs. The sauropodomorphs were the dominant terrestrial herbivores throughout much of the Mesozoic Era, from their origins in the Late Triassic until their decline and extinction at the end of the Cretaceous.

<span class="mw-page-title-main">Dicynodont</span> Extinct clade of therapsids

Dicynodontia is an extinct clade of anomodonts, an extinct type of non-mammalian therapsid. Dicynodonts were herbivores that typically bore a pair of tusks, hence their name, which means 'two dog tooth'. Members of the group possessed a horny, typically toothless beak, unique amongst all synapsids. Dicynodonts first appeared in Southern Pangaea during the mid-Permian, ca. 270–260 million years ago, and became globally distributed and the dominant herbivorous animals in the Late Permian, ca. 260–252 Mya. They were devastated by the end-Permian Extinction that wiped out most other therapsids ca. 252 Mya. They rebounded during the Triassic but died out towards the end of that period. They were the most successful and diverse of the non-mammalian therapsids, with over 70 genera known, varying from rat-sized burrowers to elephant-sized browsers.

<i>Stegodon</i> Genus of extinct proboscidean

Stegodon is an extinct genus of proboscidean, related to elephants. It was originally assigned to the family Elephantidae along with modern elephants but is now placed in the extinct family Stegodontidae. Like elephants, Stegodon had teeth with plate-like lophs that are different from those of more primitive proboscideans like gomphotheres and mammutids. The oldest fossils of the genus are found in Late Miocene strata in Asia, likely originating from the more archaic Stegolophodon, subsequently migrating into Africa. While the genus became extinct in Africa during the Pliocene, Stegodon remained widespread in South, Southeast and East Asia until the end of the Pleistocene.

<i>Toxodon</i> Extinct genus of notoungulates

Toxodon is an extinct genus of large ungulate native to South America from the Late Miocene to early Holocene epochs. Toxodon is a member of Notoungulata, an order of extinct South American native ungulates distinct from the two living ungulate orders that had been indigenous to the continent for over 60 million years since the early Cenozoic, prior to the arrival of living ungulates into South America around 2.5 million years ago during the Great American Interchange. Toxodon is a member of the family Toxodontidae, which includes medium to large sized herbivores. Toxodon was one of the largest members of Toxodontidae and Notoungulata, with Toxodon platensis having an estimated body mass of 1,000–1,200 kilograms (2,200–2,600 lb).

<span class="mw-page-title-main">Insular dwarfism</span> Form of phyletic dwarfism occurring on islands

Insular dwarfism, a form of phyletic dwarfism, is the process and condition of large animals evolving or having a reduced body size when their population's range is limited to a small environment, primarily islands. This natural process is distinct from the intentional creation of dwarf breeds, called dwarfing. This process has occurred many times throughout evolutionary history, with examples including dinosaurs, like Europasaurus and Magyarosaurus dacus, and modern animals such as elephants and their relatives. This process, and other "island genetics" artifacts, can occur not only on islands, but also in other situations where an ecosystem is isolated from external resources and breeding. This can include caves, desert oases, isolated valleys and isolated mountains. Insular dwarfism is one aspect of the more general "island effect" or "Foster's rule", which posits that when mainland animals colonize islands, small species tend to evolve larger bodies, and large species tend to evolve smaller bodies. This is itself one aspect of island syndrome, which describes the differences in morphology, ecology, physiology and behaviour of insular species compared to their continental counterparts.

<i>Anancus</i> Genus of proboscideans

Anancus is an extinct genus of "tetralophodont gomphothere" native to Afro-Eurasia, that lived from the Tortonian stage of the late Miocene until its extinction during the Early Pleistocene, roughly from 8.5–2 million years ago.

<span class="mw-page-title-main">Whippomorpha</span> Suborder of mammals

Whippomorpha or Cetancodonta is a group of artiodactyls that contains all living cetaceans and hippopotamuses. All Whippomorphs are descendants of the last common ancestor of Hippopotamus amphibius and Tursiops truncatus. This makes it a crown group. Whippomorpha is a suborder within the order Artiodactyla. The placement of Whippomorpha within Artiodactyla is a matter of some contention, as hippopotamuses were previously considered to be more closely related to Suidae (pigs) and Tayassuidae (peccaries). Most contemporary scientific phylogenetic and morphological research studies link hippopotamuses with cetaceans, and genetic evidence has overwhelmingly supported an evolutionary relationship between Hippopotamidae and Cetacea. Modern Whippomorphs all share a number of behavioural and physiological traits; such as a dense layer of subcutaneous fat and largely hairless bodies. They exhibit amphibious and aquatic behaviors and possess similar auditory structures.

<span class="mw-page-title-main">Cyprus dwarf hippopotamus</span> Species of mammal (fossil)

The Cyprus dwarf hippopotamus or Cypriot pygmy hippopotamus is an extinct species of hippopotamus that inhabited the island of Cyprus from the Pleistocene until the early Holocene. The 200-kilogram (440 lb) Cyprus dwarf hippo was roughly the same size as the extant pygmy hippopotamus. Unlike the modern pygmy hippo, the Cyprus dwarf became small through the process of insular dwarfism. H. minor is the smallest hippopotamus of all known insular hippopotamuses. It is estimated to have measured 76 cm (2.5 ft) tall and 121 cm (4.0 ft) long.

<span class="mw-page-title-main">Late Pleistocene extinctions</span> Extinctions of large mammals in the Late Pleistocene

The Late Pleistocene to the beginning of the Holocene saw numerous extinctions of predominantly megafaunal animal species, which resulted in a collapse in faunal density and diversity across the globe. The extinctions during the Late Pleistocene are differentiated from previous extinctions by the widespread absence of ecological succession to replace these extinct megafaunal species, and the regime shift of previously established faunal relationships and habitats as a consequence. The timing and severity of the extinctions varied by region and are thought to have been driven by varying combinations of human and climatic factors. Human impact on megafauna populations is thought to have been driven by hunting ("overkill"), as well as possibly environmental alteration. The relative importance of human vs climatic factors in the extinctions has been the subject of long-running controversy.

<i>Lisowicia</i> Genus of giant dicynodont therapsid

Lisowicia is an extinct genus of giant dicynodont synapsid that lived in what is now Poland during the late Norian or earliest Rhaetian age of the Late Triassic Period, about 210–205 million years ago. Lisowicia is the largest known dicynodont, as well as the largest non-mammalian synapsid, reaching about 4.5 metres (15 ft) long, standing up to 2.6 metres (8.5 ft) tall at the hips and weighing around 5–7 metric tons, comparable in size to modern elephants. It was also one of the last dicynodonts, living shortly before their extinction at the end of the Triassic period. Fossils of a giant dicynodont were known from Poland since 2008, but Lisowicia was not named and officially described as a new species until late 2018.

<span class="mw-page-title-main">Wood-pasture hypothesis</span> Ecological theory

The wood-pasture hypothesis is a scientific hypothesis positing that open and semi-open pastures and wood-pastures formed the predominant type of landscape in post-glacial temperate Europe, rather than the common belief of primeval forests. The hypothesis proposes that such a landscape would be formed and maintained by large wild herbivores. Although others, including landscape ecologist Oliver Rackham, had previously expressed similar ideas, it was the Dutch researcher Frans Vera, who, in his 2000 book Grazing Ecology and Forest History, first developed a comprehensive framework for such ideas and formulated them into a theorem. Vera's proposals, although highly controversial, came at a time when the role grazers played in woodlands was increasingly being reconsidered, and are credited for ushering in a period of increased reassessment and interdisciplinary research in European conservation theory and practice. Although Vera largely focused his research on the European situation, his findings could also be applied to other temperate ecological regions worldwide, especially the broadleaved ones.

References

  1. 1 2 "Megaherbivore". Collins Dictionary. Retrieved 11 January 2024. Tropical seagrass meadows support a diversity of grazers spanning the meso-, macro-, and megaherbivore scales.
  2. 1 2 Onstein, Renske E.; Kissling, W. Daniel; Linder, H. Peter (2022-04-13). "The megaherbivore gap after the non-avian dinosaur extinctions modified trait evolution and diversification of tropical palms". Proceedings of the Royal Society B: Biological Sciences. 289 (1972). doi:10.1098/rspb.2021.2633. ISSN   0962-8452. PMC   9006001 . PMID   35414237.
  3. 1 2 3 Malhi, Yadvinder; Doughty, Christopher E.; Galetti, Mauro; Smith, Felisa A.; Svenning, Jens-Christian; Terborgh, John W. (2016-01-25). "Megafauna and ecosystem function from the Pleistocene to the Anthropocene". Proceedings of the National Academy of Sciences. 113 (4): 838–846. Bibcode:2016PNAS..113..838M. doi: 10.1073/pnas.1502540113 . ISSN   0027-8424. PMC   4743772 . PMID   26811442.
  4. 1 2 3 4 Bocherens, Hervé (2018). "The Rise of the Anthroposphere since 50,000 Years: An Ecological Replacement of Megaherbivores by Humans in Terrestrial Ecosystems?". Frontiers in Ecology and Evolution. 6. doi: 10.3389/fevo.2018.00003 . ISSN   2296-701X.
  5. 1 2 Sulej, Tomasz; Niedźwiedzki, Grzegorz (2019-01-04). "An elephant-sized Late Triassic synapsid with erect limbs". Science. 363 (6422): 78–80. Bibcode:2019Sci...363...78S. doi:10.1126/science.aal4853. ISSN   0036-8075. PMID   30467179.
  6. Viglietti, Pia A.; Benson, Roger B. J.; Smith, Roger M. H.; Botha, Jennifer; Kammerer, Christian F.; Skosan, Zaituna; Butler, Elize; Crean, Annelise; Eloff, Bobby; Kaal, Sheena; Mohoi, Joël; Molehe, William; Mtalana, Nolusindiso; Mtungata, Sibusiso; Ntheri, Nthaopa (2021-04-27). "Evidence from South Africa for a protracted end-Permian extinction on land". Proceedings of the National Academy of Sciences. 118 (17). Bibcode:2021PNAS..11817045V. doi: 10.1073/pnas.2017045118 . ISSN   0027-8424. PMC   8092562 . PMID   33875588.
  7. Fiorelli, Lucas E.; Ezcurra, Martín D.; Hechenleitner, E. Martín; Argañaraz, Eloisa; Taborda, Jeremías R. A.; Trotteyn, M. Jimena; von Baczko, M. Belén; Desojo, Julia B. (2013-11-28). "The oldest known communal latrines provide evidence of gregarism in Triassic megaherbivores". Scientific Reports. 3 (1): 3348. Bibcode:2013NatSR...3E3348F. doi:10.1038/srep03348. ISSN   2045-2322. PMC   3842779 . PMID   24287957.
  8. Boitsova, Elizaveta A; Skutschas, Pavel P; Sennikov, Andrey G; Golubev, Valeriy K; Masuytin, Vladimir V; Masuytina, Olga A (2019-07-05). "Bone histology of two pareiasaurs from Russia (Deltavjatia rossica and Scutosaurus karpinskii) with implications for pareiasaurian palaeobiology". Biological Journal of the Linnean Society. doi:10.1093/biolinnean/blz094. ISSN   0024-4066.
  9. Burgess, Seth D.; Bowring, Samuel A. (2015-08-28). "High-precision geochronology confirms voluminous magmatism before, during, and after Earth's most severe extinction". Science Advances. 1 (7): e1500470. Bibcode:2015SciA....1E0470B. doi:10.1126/sciadv.1500470. ISSN   2375-2548. PMC   4643808 . PMID   26601239.
  10. Hulse, D; Lau, K.V.; Sebastiaan, J.V.; Arndt, S; Meyer, K.M.; Ridgwell, A (28 Oct 2021). "End-Permian marine extinction due to temperature-driven nutrient recycling and euxinia". Nat Geosci. 14 (11): 862–867. Bibcode:2021NatGe..14..862H. doi:10.1038/s41561-021-00829-7. S2CID   240076553.
  11. Wu, Yuyang; Chu, Daoliang; Tong, Jinnan; Song, Haijun; Dal Corso, Jacopo; Wignall, Paul B.; Song, Huyue; Du, Yong; Cui, Ying (2021-04-09). "Six-fold increase of atmospheric pCO2 during the Permian–Triassic mass extinction". Nature Communications. 12 (1): 2137. doi:10.1038/s41467-021-22298-7. ISSN   2041-1723. PMC   8035180 . PMID   33837195.
  12. Erwin, Douglas H. (1990). "Carboniferous-Triassic gastropod diversity patterns and the Permo-Triassic mass extinction". Paleobiology. 16 (2): 187–203. Bibcode:1990Pbio...16..187E. doi:10.1017/s0094837300009878. ISSN   0094-8373. S2CID   87789173.
  13. Barras, Colin (8 January 2024). "The mass extinction that might never have happened". New Scientist. Retrieved 2024-01-08.
  14. Racki, Grzegorz; Lucas, Spencer G. (2020-04-20). "Timing of dicynodont extinction in light of an unusual Late Triassic Polish fauna and Cuvier's approach to extinction". Historical Biology. 32 (4): 452–461. Bibcode:2020HBio...32..452R. doi:10.1080/08912963.2018.1499734. ISSN   0891-2963. S2CID   91926999.
  15. Wyenberg-Henzler, Taia (2022). "Ecomorphospace occupation of large herbivorous dinosaurs from Late Jurassic through to Late Cretaceous time in North America". PeerJ. 10: e13174. doi: 10.7717/peerj.13174 . ISSN   2167-8359. PMC   9009330 . PMID   35433123.
  16. Button, David J; Barrett, Paul; Rayfield, Emily (November 2016). "Comparative cranial myology and biomechanics of Plateosaurus and Camarasaurus and evolution of the sauropod feeding apparatus". Palaeontology. 59 (6): 887–913. Bibcode:2016Palgy..59..887B. doi:10.1111/pala.12266. ISSN   0031-0239. S2CID   53619160.
  17. Grinham, Luke R. (August 2023). "Cenozoic megaherbivore emergence". Nature Ecology & Evolution. 7 (8): 1173. Bibcode:2023NatEE...7.1173G. doi:10.1038/s41559-023-02100-1. ISSN   2397-334X. PMID   37258656. S2CID   259000968.
  18. Mallon, Jordan C.; Anderson, Jason S. (2014-06-11). "The Functional and Palaeoecological Implications of Tooth Morphology and Wear for the Megaherbivorous Dinosaurs from the Dinosaur Park Formation (Upper Campanian) of Alberta, Canada". PLOS ONE. 9 (6): e98605. Bibcode:2014PLoSO...998605M. doi: 10.1371/journal.pone.0098605 . ISSN   1932-6203. PMC   4053334 . PMID   24918431.
  19. Brusatte, Stephen L.; Butler, Richard J.; Barrett, Paul M.; Carrano, Matthew T.; Evans, David C.; Lloyd, Graeme T.; Mannion, Philip D.; Norell, Mark A.; Peppe, Daniel J.; Upchurch, Paul; Williamson, Thomas E. (2015-07-28). "The extinction of the dinosaurs". Biological Reviews. 90 (2): 628–642. doi:10.1111/brv.12128. hdl: 20.500.11820/176e5907-26ec-4959-867f-0f2e52335f88 . ISSN   1464-7931. PMID   25065505.
  20. Clauss, M.; Frey, R.; Kiefer, B.; Lechner-Doll, M.; Loehlein, W.; Polster, C.; Rossner, G. E.; Streich, W. J. (2003-06-01). "The maximum attainable body size of herbivorous mammals: morphophysiological constraints on foregut, and adaptations of hindgut fermenters". Oecologia. 136 (1): 14–27. Bibcode:2003Oecol.136...14C. doi:10.1007/s00442-003-1254-z. ISSN   0029-8549. PMID   12712314. S2CID   206989975.
  21. Sanisidro, Oscar; Mihlbachler, Matthew C.; Cantalapiedra, Juan L. (2023-05-12). "A macroevolutionary pathway to megaherbivory". Science. 380 (6645): 616–618. Bibcode:2023Sci...380..616S. doi:10.1126/science.ade1833. ISSN   0036-8075. PMID   37167399. S2CID   258618428.
  22. Domning, D.P. (February 2001). "Sirenians, seagrasses, and Cenozoic ecological change in the Caribbean". Palaeogeography, Palaeoclimatology, Palaeoecology. 166 (1–2): 27–50. Bibcode:2001PPP...166...27D. doi:10.1016/S0031-0182(00)00200-5.
  23. Price, Gilbert J.; Fitzsimmons, Kathryn E.; Nguyen, Ai Duc; Zhao, Jian-xin; Feng, Yue-xing; Sobbe, Ian H.; Godthelp, Henk; Archer, Michael; Hand, Suzanne J. (2021-11-30). "New ages of the world's largest-ever marsupial: Diprotodon optatum from Pleistocene Australia". Quaternary International. Human Evolution in the Asia-Pacific Realm: Proceedings of the 1st Asia-Pacific Conference on Human Evolution. 603: 64–73. Bibcode:2021QuInt.603...64P. doi:10.1016/j.quaint.2021.06.013. ISSN   1040-6182.
  24. Palmer, D., ed. (1999). The Marshall Illustrated Encyclopedia of Dinosaurs and Prehistoric Animals. London: Marshall Editions. p. 208. ISBN   1-84028-152-9.
  25. Saarinen, Juha; Karme, Aleksis (June 2017). "Tooth wear and diets of extant and fossil xenarthrans (Mammalia, Xenarthra) – Applying a new mesowear approach". Palaeogeography, Palaeoclimatology, Palaeoecology. 476: 42–54. Bibcode:2017PPP...476...42S. doi:10.1016/j.palaeo.2017.03.027.
  26. van Geel, Bas; van Leeuwen, Jacqueline F.N.; Nooren, Kees; Mol, Dick; den Ouden, Natasja; van der Knaap, Pim W.O.; Seersholm, Frederik V.; Rey-Iglesia, Alba; Lorenzen, Eline D. (January 2022). "Diet and environment of Mylodon darwinii based on pollen of a Late-Glacial coprolite from the Mylodon Cave in southern Chile". Review of Palaeobotany and Palynology. 296: 104549. Bibcode:2022RPaPa.29604549V. doi: 10.1016/j.revpalbo.2021.104549 . S2CID   239902623.
  27. Pujos, François; Gaudin, Timothy J.; De Iuliis, Gerardo; Cartelle, Cástor (September 2012). "Recent Advances on Variability, Morpho-Functional Adaptations, Dental Terminology, and Evolution of Sloths". Journal of Mammalian Evolution. 19 (3): 159–169. doi:10.1007/s10914-012-9189-y. hdl: 11336/69736 . ISSN   1064-7554. S2CID   254701351.
  28. Pérez-Crespo, V. C. A. N.; Arroyo-Cabrales, J. N.; Benammi, M.; Johnson, E.; Polaco, O. J.; Santos-Moreno, A.; Morales-Puente, P.; Cienfuegos-Alvarado, E. (2012). "Geographic variation of diet and habitat of the Mexican populations of Columbian Mammoth (Mammuthus columbi)". Quaternary International. 276–277: 8–16. Bibcode:2012QuInt.276....8P. doi:10.1016/j.quaint.2012.03.014.
  29. Koch, PL; Barnosky, AD (2006). "Late Quaternary extinctions: state of the debate". Annual Review of Ecology, Evolution, and Systematics. 37: 215–250. doi:10.1146/annurev.ecolsys.34.011802.132415.
  30. Gill, Jacquelyn L. (2014). "Ecological impacts of the late Quaternary megaherbivore extinctions". New Phytologist. 201 (4): 1163–1169. doi:10.1111/nph.12576. ISSN   0028-646X. PMID   24649488.
  31. Martin, P. S. (1963). The last 10,000 years: A fossil pollen record of the American Southwest. Tucson, AZ: Univ. Ariz. Press. pp. 61–86. ISBN   978-0-8165-1759-6.
  32. Martin, P. S. (1967). "Prehistoric overkill". In Martin, P. S.; Wright, H. E. (eds.). Pleistocene extinctions: The search for a cause. New Haven: Yale Univ. Press. pp. 75–120. ISBN   978-0-300-00755-8.
  33. Martin, P. S. (1989). "Prehistoric overkill: A global model". In Martin, P.S.; Klein, R.G. (eds.). Quaternary extinctions: A prehistoric revolution. Tucson, AZ: University of Arizona Press. pp. 354–404. ISBN   978-0-8165-1100-6.
  34. Birks, H.H. (1973). "Modern macrofossil assemblages in lake sediments in Minnesota". In Birks, H.J.B.; West, R.G. (eds.). Quaternary plant ecology: the 14th symposium of the British Ecological Society, University of Cambridge, 28–30 March 1972. Oxford: Blackwell Scientific. ISBN   0-632-09120-7.
  35. 1 2 'Wildlife' Review. U.S. Department of the Interior, Fish and Wildlife Service. 1989.
  36. Wells, Harry B. M.; Crego, Ramiro D.; Opedal, Øystein H.; Khasoha, Leo M.; Alston, Jesse M.; Reed, Courtney G.; Weiner, Sarah; Kurukura, Samson; Hassan, Abdikadir A.; Namoni, Mathew; Ekadeli, Jackson; Kimuyu, Duncan M.; Young, Truman P.; Kartzinel, Tyler R.; Palmer, Todd M. (2021). "Experimental evidence that effects of megaherbivores on mesoherbivore space use are influenced by species' traits". Journal of Animal Ecology. 90 (11): 2510–2522. Bibcode:2021JAnEc..90.2510W. doi: 10.1111/1365-2656.13565 . ISSN   0021-8790. PMID   34192343. S2CID   235698268.
  37. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Owen-Smith, R. Norman (1988). Megaherbivores: The Influence of Very Large Body Size on Ecology. Cambridge University Press. ISBN   978-0-521-42637-4.
  38. 1 2 3 Ray, Justina; Redford, Kent H.; Steneck, Robert; Berger, Joel (2013-04-09). Large Carnivores and the Conservation of Biodiversity. Island Press. p. 87. ISBN   978-1-59726-609-3.
  39. Gheerbrant, E. (2009). "Paleocene emergence of elephant relatives and the rapid radiation of African ungulates". Proceedings of the National Academy of Sciences of the United States of America. 106 (26): 10717–10721. Bibcode:2009PNAS..10610717G. doi: 10.1073/pnas.0900251106 . PMC   2705600 . PMID   19549873.
  40. Gatesy, J. (1 May 1997). "More DNA support for a Cetacea/Hippopotamidae clade: the blood-clotting protein gene gamma-fibrinogen". Molecular Biology and Evolution . 14 (5): 537–543. doi: 10.1093/oxfordjournals.molbev.a025790 . PMID   9159931.
  41. Boisserie, Jean-Renaud; Lihoreau, Fabrice; Brunet, Michel (2005). "The position of Hippopotamidae within Cetartiodactyla". Proceedings of the National Academy of Sciences . 102 (5): 1537–1541. Bibcode:2005PNAS..102.1537B. doi: 10.1073/pnas.0409518102 . PMC   547867 . PMID   15677331.
  42. Chen, Lei; Qiu, Qiang; Jiang, Yu; Wang, Kun; Lin, Zeshan; et al. (2019-06-21). "Large-scale ruminant genome sequencing provides insights into their evolution and distinct traits". Science. 364 (6446). Bibcode:2019Sci...364.6202C. doi:10.1126/science.aav6202. ISSN   0036-8075. PMID   31221828.
  43. 1 2 Ripple, William J.; Newsome, Thomas M.; Wolf, Christopher; Dirzo, Rodolfo; Everatt, Kristoffer T.; et al. (May 2015). "Collapse of the world's largest herbivores". Science Advances. 1 (4): e1400103. Bibcode:2015SciA....1E0103R. doi:10.1126/sciadv.1400103. ISSN   2375-2548. PMC   4640652 . PMID   26601172.
  44. Schowanek, Simon D.; Davis, Matt; Lundgren, Erick J.; Middleton, Owen; Rowan, John; Pedersen, Rasmus Ø.; Ramp, Daniel; Sandom, Christopher J.; Svenning, Jens-Christian (April 2021). Lyons, Kathleen (ed.). "Reintroducing extirpated herbivores could partially reverse the late Quaternary decline of large and grazing species". Global Ecology and Biogeography. 30 (4): 896–908. Bibcode:2021GloEB..30..896S. doi:10.1111/geb.13264. ISSN   1466-822X. S2CID   233926684.
  45. Owen-Smith, N. (2013). "Megaherbivores". Encyclopedia of Biodiversity (Second ed.). pp. 223–229. doi:10.1016/B978-0-12-384719-5.00358-0. ISBN   9780123847201.
  46. Clauss, Marcus; Frey, R; Kiefer, B; Lechner-Doll, M. (2003). "The maximum attainable body size of herbivorous mammals: Morphophysiological constraints on foregut, and adaptations of hindgut fermenters". Oecologia. 136 (1): 14–27. Bibcode:2003Oecol.136...14C. doi:10.1007/s00442-003-1254-z. PMID   12712314. S2CID   206989975.
  47. Ruggiero, Richard G. (March 1991). "Opportunistic predation on elephant calves". African Journal of Ecology. 29 (1): 86–89. Bibcode:1991AfJEc..29...86R. doi:10.1111/j.1365-2028.1991.tb00823.x. ISSN   0141-6707.
  48. 1 2 Hyvärinen, Olli (2022). Megaherbivores and Earth System Functioning: Landscape-scale Effects of White Rhino Loss on Vegetation, Fire and Soil Carbon Dynamics. Swedish University of Agricultural Sciences. p. 107. ISBN   978-91-7760-966-7.
  49. Gill, Jacquelyn L. (2013). "Ecological impacts of the late Quaternary megaherbivore extinctions". New Phytologist. 201 (4): 1163–1169. doi:10.1111/nph.12576. PMID   24649488.
  50. le Roux, Elizabeth; Kerley, Graham I.H.; Cromsigt, Joris P.G.M. (August 2018). "Megaherbivores Modify Trophic Cascades Triggered by Fear of Predation in an African Savanna Ecosystem". Current Biology. 28 (15): 2493–2499.e3. doi: 10.1016/j.cub.2018.05.088 . ISSN   0960-9822. PMID   30033334.
  51. Lee, Derek E.; Bond, Monica L.; Kissui, Bernard M.; Kiwango, Yustina A.; Bolger, Douglas T. (2016-05-11). "Spatial variation in giraffe demography: a test of 2 paradigms". Journal of Mammalogy. 97 (4): 1015–1025. doi:10.1093/jmammal/gyw086. ISSN   1545-1542.
  52. 1 2 Bruton, Michael N. (2012-12-06). Alternative Life-History Styles of Animals. Springer Science & Business Media. p. 447. ISBN   978-94-009-2605-9.
  53. Power, R. John; Shem Compion, R.X. (April 2009). "Lion Predation on Elephants in the Savuti, Chobe National Park, Botswana". African Zoology. 44 (1): 36–44. doi:10.3377/004.044.0104. ISSN   1562-7020. S2CID   86371484.
  54. Thuppil, Vivek; Coss, Richard G. (2013-10-23). "Wild Asian elephants distinguish aggressive tiger and leopard growls according to perceived danger". Biology Letters. 9 (5): 20130518. doi:10.1098/rsbl.2013.0518. ISSN   1744-9561. PMC   3971691 . PMID   24026347.
  55. Estes, R. (1992). The Behavior Guide to African Mammals: including hoofed mammals, carnivores, primates. University of California Press. pp.  222–226. ISBN   978-0-520-08085-0.
  56. Larramendi, A. (2016). "Shoulder height, body mass and shape of proboscideans" (PDF). Acta Palaeontologica Polonica. 61 (3): 537–574. doi:10.4202/app.00136.2014. ISSN   0888-8892. S2CID   84294169.
  57. Manlik, Oliver (2019). "The Importance of Reproduction for the Conservation of Slow-Growing Animal Populations". Reproductive Sciences in Animal Conservation. Advances in Experimental Medicine and Biology. Vol. 1200. pp. 13–39. doi:10.1007/978-3-030-23633-5_2. ISBN   978-3-030-23632-8. ISSN   0065-2598. PMID   31471793. S2CID   201756810.
  58. Yuan, Rong; Hascup, Erin; Hascup, Kevin; Bartke, Andrzej (2023-11-01). "Relationships among Development, Growth, Body Size, Reproduction, Aging, and Longevity–Trade-Offs and Pace-Of-Life". Biochemistry (Moscow). 88 (11): 1692–1703. doi: 10.1134/S0006297923110020 . ISSN   1608-3040. PMC   10792675 . PMID   38105191. S2CID   265507842.
  59. 1 2 Rafferty, John P. "K-selected species". Britannica. Retrieved 2 April 2017.
  60. Trimble, M. J.; Ferreira, S. M.; Van Aarde, R. J. (September 2009). "Drivers of megaherbivore demographic fluctuations: inference from elephants". Journal of Zoology. 279 (1): 18–26. doi:10.1111/j.1469-7998.2009.00560.x. ISSN   0952-8369.