Methanothrix

Last updated

Methanothrix
Scientific classification
Domain:
Kingdom:
Phylum:
Class:
Order:
Family:
Genus:
Methanothrix

Huser, Wuhrmann & Zehnder 1983 nom. nov.
Type species
Methanothrix soehngenii
Huser, Wuhrmann & Zehnder 1983
species
Synonyms

In the taxonomy of microorganisms, the Methanothrix is a genus of methanogenic archaea within the Euryarchaeota. [1] [2] Methanothrix cells were first isolated from a mesophilic sewage digester but have since been found in many anaerobic and aerobic environments. [3] [4] Methanothrix were originally understood to be obligate anaerobes that can survive exposure to high concentrations of oxygen, [5] [6] but recent studies have shown at least one Candidatus operational taxonomic unit proposed to be in the Methanothrix genus not only survives but remains active in oxic soils. [4] This proposed species, Ca. Methanothrix paradoxum, is frequently found in methane-releasing ecosystems and is the dominant methanogen in oxic soils.

Contents

Methanothrix are non-motile rod-shaped cells which connect together to form long filaments. [5] [7] These filaments are enclosed in a proteinaceous sheath. [6] Methanothrix species, like their close relative Methanosarcina barkeri, have membranes entirely composed of diphytanylglycerol diethers. [6] [8] [9]

Phylogeny

16S rRNA based LTP_06_2022 [10] [11] [12] 53 marker proteins based GTDB 08-RS214 [13] [14] [15]

M. harundinacea (Ma, Liu & Dong 2006) Akinyemi et al. 2021

M. soehngenii Huser, Wuhrmann & Zehnder 1983

M. thermoacetophila corrig. Nozhevnikova & Chudina 1988

Metabolism

Methanothrix species use acetate [16] [17] and carbon dioxide [3] [18] as carbon substrates.

When using acetate, Methanothrix species use an incomplete citric acid cycle in the oxidative direction. [6] [8] After formation of acetyl-CoA, the carbon-carbon bond of acetate is cleaved by a carbon monoxide dehydrogenase/acetyl-CoA synthase enzyme. The methyl moiety is transferred through multiple complexes until it is finally reduced to methane by a methyl-CoM reductase. [17]

Methanothrix species have been observed receiving electrons to reduce carbon dioxide to methane through direct interspecies electron transfer (DIET) with Geobacter species. [3] [18] [19] Geobacter sulfurreducens transfers electrons into Methanothrix cells using electrically conductive pili. [20]

Microbial Ecology

Compared to the acetotrophic Methanosarcina species, Methanothrix species have lower Monod Equation parameters. Methanothrix have slower maximum growth rates and smaller half-saturation coefficients due to differences in the genera's aceticlastic pathways. [17] [21] Consequently, when acetate concentrations are high, Methanothrix species are likely to be outcompeted by Methanosarcina, which can utilize the available substrate faster. However, in low acetate environments, Methanothrix species will dominate due to their lower minimum threshold for acetate. This expectation is consistent with observations of abundant Methanothrix in low-acetate ecosystems across the world. [8] [16] [22] [23]

Because Methanothrix species are well adapted to survive exposure to oxygen and thrive using either acetate or carbon dioxide as a carbon substrate, they are thought to be one of the largest microbial contributors to methanogenesis on Earth. [19] [24]

See also

Related Research Articles

Methanogens are microorganisms that produce methane as a metabolic byproduct in hypoxic conditions. They belong to the domain Archaea and are members of the phylum Euryarchaeota. Methanogens are common in wetlands, where they are responsible for marsh gas, and can occur in the digestive tracts of animals including ruminants and humans, where they are responsible for the methane content of belching and flatulence. In marine sediments, the biological production of methane, termed methanogenesis, is generally confined to where sulfates are depleted below the top layers. Methanogens play an indispensable role in anaerobic wastewater treatments. Other methanogens are extremophiles, found in environments such as hot springs and submarine hydrothermal vents as well as in the "solid" rock of Earth's crust, kilometers below the surface in the deep biosphere.

Methanogenesis or biomethanation is the formation of methane coupled to energy conservation by microbes known as methanogens. Organisms capable of producing methane for energy conservation have been identified only from the domain Archaea, a group phylogenetically distinct from both eukaryotes and bacteria, although many live in close association with anaerobic bacteria. The production of methane is an important and widespread form of microbial metabolism. In anoxic environments, it is the final step in the decomposition of biomass. Methanogenesis is responsible for significant amounts of natural gas accumulations, the remainder being thermogenic.

<i>Geobacter</i> Genus of anaerobic bacteria found in soil

Geobacter is a genus of bacteria. Geobacter species are anaerobic respiration bacterial species which have capabilities that make them useful in bioremediation. Geobacter was found to be the first organism with the ability to oxidize organic compounds and metals, including iron, radioactive metals, and petroleum compounds into environmentally benign carbon dioxide while using iron oxide or other available metals as electron acceptors. Geobacter species are also found to be able to respire upon a graphite electrode. They have been found in anaerobic conditions in soils and aquatic sediment.

An acetogen is a microorganism that generates acetate (CH3COO) as an end product of anaerobic respiration or fermentation. However, this term is usually employed in a narrower sense only to those bacteria and archaea that perform anaerobic respiration and carbon fixation simultaneously through the reductive acetyl coenzyme A (acetyl-CoA) pathway (also known as the Wood-Ljungdahl pathway). These genuine acetogens are also known as "homoacetogens" and they can produce acetyl-CoA (and from that, in most cases, acetate as the end product) from two molecules of carbon dioxide (CO2) and four molecules of molecular hydrogen (H2). This process is known as acetogenesis, and is different from acetate fermentation, although both occur in the absence of molecular oxygen (O2) and produce acetate. Although previously thought that only bacteria are acetogens, some archaea can be considered to be acetogens.

<i>Methanosarcina</i> Genus of archaea

Methanosarcina is a genus of euryarchaeote archaea that produce methane. These single-celled organisms are known as anaerobic methanogens that produce methane using all three metabolic pathways for methanogenesis. They live in diverse environments where they can remain safe from the effects of oxygen, whether on the earth's surface, in groundwater, in deep sea vents, and in animal digestive tracts. Methanosarcina grow in colonies.

Microbial metabolism is the means by which a microbe obtains the energy and nutrients it needs to live and reproduce. Microbes use many different types of metabolic strategies and species can often be differentiated from each other based on metabolic characteristics. The specific metabolic properties of a microbe are the major factors in determining that microbe's ecological niche, and often allow for that microbe to be useful in industrial processes or responsible for biogeochemical cycles.

In biology, syntrophy, syntrophism, or cross-feeding is the cooperative interaction between at least two microbial species to degrade a single substrate. This type of biological interaction typically involves the transfer of one or more metabolic intermediates between two or more metabolically diverse microbial species living in close proximity to each other. Thus, syntrophy can be considered an obligatory interdependency and a mutualistic metabolism between different microbial species, wherein the growth of one partner depends on the nutrients, growth factors, or substrates provided by the other(s).

Methanococcus is a genus of coccoid methanogens of the family Methanococcaceae. They are all mesophiles, except the thermophilic M. thermolithotrophicus and the hyperthermophilic M. jannaschii. The latter was discovered at the base of a “white smoker” chimney at 21°N on the East Pacific Rise and it was the first archaeal genome to be completely sequenced, revealing many novel and eukaryote-like elements.

<span class="mw-page-title-main">Wood–Ljungdahl pathway</span> A set of biochemical reactions used by some bacteria

The Wood–Ljungdahl pathway is a set of biochemical reactions used by some bacteria. It is also known as the reductive acetyl-coenzyme A (acetyl-CoA) pathway. This pathway enables these organisms to use hydrogen as an electron donor, and carbon dioxide as an electron acceptor and as a building block for biosynthesis.

In taxonomy, Methanosaeta is a genus of microbes within Methanosaetaceae. Like other species in this family, those of Methanosaeta metabolize acetate as their sole source of energy. The genus contains two species, Methanosaeta concilii, which is the type species and Methanosaeta thermophila. For a time, some scientists believed there to be a third species, Methanosaeta soehngenii, but because it has not been described from a pure culture, it is now called Methanothrix soehngenii.

<i>Methanobacterium</i> Genus of archaea

Methanobacterium is a genus of the Methanobacteria class in the Archaea kingdom, which produce methane as a metabolic byproduct. Despite the name, this genus belongs not to the bacterial domain but the archaeal domain. Methanobacterium are nonmotile and live without oxygen, which is toxic to them, and they only inhabit anoxic environments.

In taxonomy, Methanofollis is a genus of the Methanomicrobiaceae.

Geobacter metallireducens is a gram-negative metal-reducing proteobacterium. It is a strict anaerobe that oxidizes several short-chain fatty acids, alcohols, and monoaromatic compounds with Fe(III) as the sole electron acceptor. It can also use uranium for its growth and convert U(VI) to U(IV).

Methanothrix soehngenii is a species of methanogenic archaea. Its cells are non-motile, non-spore-forming, rod-shaped and are normally combined end to end in long filaments, surrounded by a sheath-like structure. It is named in honour of N. L. Söhngen.

Geopsychrobacter electrodiphilus is a species of bacteria, the type species of its genus. It is a psychrotolerant member of its family, capable of attaching to the anodes of sediment fuel cells and harvesting electricity by oxidation of organic compounds to carbon dioxide and transferring the electrons to the anode.

<i>Methanococcus maripaludis</i> Species of archaeon

Methanococcus maripaludis is a species of methanogenic archaea found in marine environments, predominantly salt marshes. M. maripaludis is a non-pathogenic, gram-negative, weakly motile, non-spore-forming, and strictly anaerobic mesophile. It is classified as a chemolithoautotroph. This archaeon has a pleomorphic coccoid-rod shape of 1.2 by 1.6 μm, in average size, and has many unique metabolic processes that aid in survival. M. maripaludis also has a sequenced genome consisting of around 1.7 Mbp with over 1,700 identified protein-coding genes. In ideal conditions, M. maripaludis grows quickly and can double every two hours.

Methanosaeta concilii is an archaeum in the disputed genus Methanosaeta. It is obligately anaerobic, gram-negative and non-motile. It is rod-shaped with flat ends. The cells are enclosed within a cross-striated sheath. The type strain is GP6. Its genome has been sequenced.

<i>Methanosarcina barkeri</i> Species of archaeon

Methanosarcina barkeri is the most fundamental species of the genus Methanosarcina, and their properties apply generally to the genus Methanosarcina. Methanosarcina barkeri can produce methane anaerobically through different metabolic pathways. M. barkeri can subsume a variety of molecules for ATP production, including methanol, acetate, methylamines, and different forms of hydrogen and carbon dioxide. Although it is a slow developer and is sensitive to change in environmental conditions, M. barkeri is able to grow in a variety of different substrates, adding to its appeal for genetic analysis. Additionally, M. barkeri is the first organism in which the amino acid pyrrolysine was found. Furthermore, two strains of M. barkeri, M. b. Fusaro and M. b. MS have been identified to possess an F-type ATPase along with an A-type ATPase.

The sulfate-methane transition zone (SMTZ) is a zone in oceans, lakes, and rivers typically found below the sediment surface in which sulfate and methane coexist. The formation of a SMTZ is driven by the diffusion of sulfate down the sediment column and the diffusion of methane up the sediments. At the SMTZ, their diffusion profiles meet and sulfate and methane react with one another, which allows the SMTZ to harbor a unique microbial community whose main form of metabolism is anaerobic oxidation of methane (AOM). The presence of AOM marks the transition from dissimilatory sulfate reduction to methanogenesis as the main metabolism utilized by organisms.

<span class="mw-page-title-main">Hydroxyarchaeol</span> Chemical compound

Hydroxyarchaeol is a core lipid unique to archaea, similar to archaeol, with a hydroxide functional group at the carbon-3 position of one of its ether side chains. It is found exclusively in certain taxa of methanogenic archaea, and is a common biomarker for methanogenesis and methane-oxidation. Isotopic analysis of hydroxyarchaeol can be informative about the environment and substrates for methanogenesis.

References

  1. See the NCBI webpage on Methanothrix. Data extracted from the "NCBI taxonomy resources". National Center for Biotechnology Information . Retrieved 2007-03-19.
  2. J.P. Euzéby. "Methanothrix". List of Prokaryotic names with Standing in Nomenclature (LPSN). Retrieved 2021-11-17.
  3. 1 2 3 Holmes, Dawn E.; Shrestha, Pravin M.; Walker, David J. F.; Dang, Yan; Nevin, Kelly P.; Woodard, Trevor L.; Lovley, Derek R. (2017). Schloss, Patrick D. (ed.). "Metatranscriptomic Evidence for Direct Interspecies Electron Transfer between Geobacter and Methanothrix Species in Methanogenic Rice Paddy Soils". Applied and Environmental Microbiology. 83 (9). doi:10.1128/AEM.00223-17. ISSN   0099-2240. PMC   5394310 . PMID   28258137.
  4. 1 2 Angle, Jordan C.; Morin, Timothy H.; Solden, Lindsey M.; Narrowe, Adrienne B.; Smith, Garrett J.; Borton, Mikayla A.; Rey-Sanchez, Camilo; Daly, Rebecca A.; Mirfenderesgi, Golnazalsdat; Hoyt, David W.; Riley, William J.; Miller, Christopher S.; Bohrer, Gil; Wrighton, Kelly C. (2017-11-16). "Methanogenesis in oxygenated soils is a substantial fraction of wetland methane emissions". Nature Communications. 8 (1): 1567. doi:10.1038/s41467-017-01753-4. ISSN   2041-1723. PMC   5691036 . PMID   29146959.
  5. 1 2 Huser, Beat A.; Wuhrmann, Karl; Zehnder, Alexander J. B. (1982-07-01). "Methanothrix soehngenii gen. nov. sp. nov., a new acetotrophic non-hydrogen-oxidizing methane bacterium". Archives of Microbiology. 132 (1): 1–9. doi:10.1007/BF00690808. ISSN   1432-072X.
  6. 1 2 3 4 PATEL, GIRISHCHANDRA B.; SPROTT, G. DENNIS (1990). "Methanosaeta concilii gen. nov., sp. nov. ("Methanothrix concilii") and Methanosaeta thermoacetophila nom. rev., comb. nov.†". International Journal of Systematic and Evolutionary Microbiology. 40 (1): 79–82. doi:10.1099/00207713-40-1-79. ISSN   1466-5034.
  7. Koga, Y; Nishihara, M; Morii, H; Akagawa-Matsushita, M (1993). "Ether polar lipids of methanogenic bacteria: structures, comparative aspects, and biosyntheses". Microbiological Reviews. 57 (1): 164–182. doi:10.1128/mr.57.1.164-182.1993. ISSN   0146-0749. PMC   372904 . PMID   8464404.
  8. 1 2 3 Ekiel, I; Sprott, G D; Patel, G B (1985). "Acetate and CO2 assimilation by Methanothrix concilii". Journal of Bacteriology. 162 (3): 905–908. doi:10.1128/jb.162.3.905-908.1985. ISSN   0021-9193. PMC   215861 . PMID   3922956.
  9. Langworthy, T. A.; Tornabene, T. G.; Holzer, G. (1982-05-01). "Lipids of Archaebacteria". Zentralblatt für Bakteriologie Mikrobiologie und Hygiene: I. Abt. Originale C: Allgemeine, angewandte und ökologische Mikrobiologie. 3 (2): 228–244. doi:10.1016/S0721-9571(82)80036-7. ISSN   0721-9571.
  10. "The LTP" . Retrieved 10 May 2023.
  11. "LTP_all tree in newick format" . Retrieved 10 May 2023.
  12. "LTP_06_2022 Release Notes" (PDF). Retrieved 10 May 2023.
  13. "GTDB release 08-RS214". Genome Taxonomy Database . Retrieved 10 May 2023.
  14. "ar53_r214.sp_label". Genome Taxonomy Database . Retrieved 10 May 2023.
  15. "Taxon History". Genome Taxonomy Database . Retrieved 10 May 2023.
  16. 1 2 Jetten, M (1992). "Methanogenesis from acetate: a comparison of the acetate metabolism in Methanothrix soehngenii and Methanosarcina spp". FEMS Microbiology Letters. 88 (3–4): 181–197. doi:10.1016/0378-1097(92)90802-u. ISSN   0378-1097.
  17. 1 2 3 Welte, Cornelia; Deppenmeier, Uwe (2014-07-01). "Bioenergetics and anaerobic respiratory chains of aceticlastic methanogens". Biochimica et Biophysica Acta (BBA) - Bioenergetics. 18th European Bioenergetics Conference 2014 Lisbon, Portugal. 1837 (7): 1130–1147. doi:10.1016/j.bbabio.2013.12.002. hdl: 2066/189998 . ISSN   0005-2728. PMID   24333786.
  18. 1 2 Rotaru, Amelia-Elena; Shrestha, Pravin Malla; Liu, Fanghua; Shrestha, Minita; Shrestha, Devesh; Embree, Mallory; Zengler, Karsten; Wardman, Colin; Nevin, Kelly P.; Lovley, Derek R. (2013-12-13). "A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane". Energy & Environmental Science. 7 (1): 408–415. doi:10.1039/C3EE42189A. ISSN   1754-5706.
  19. 1 2 Lovley, Derek R. (2017-09-08). "Syntrophy Goes Electric: Direct Interspecies Electron Transfer". Annual Review of Microbiology. 71 (1): 643–664. doi:10.1146/annurev-micro-030117-020420. ISSN   0066-4227. PMID   28697668.
  20. Malvankar, Nikhil S; Lovley, Derek R (2014-06-01). "Microbial nanowires for bioenergy applications". Current Opinion in Biotechnology. Energy biotechnology • Environmental biotechnology. 27: 88–95. doi:10.1016/j.copbio.2013.12.003. ISSN   0958-1669. PMID   24863901.
  21. Conklin, Anne; Stensel, H. David; Ferguson, John (2006). "Growth Kinetics and Competition Between Methanosarcina and Methanosaeta in Mesophilic Anaerobic Digestion". Water Environment Research. 78 (5): 486–496. doi:10.2175/106143006X95393. ISSN   1061-4303. PMID   16752610.
  22. Fey, Axel; Conrad, Ralf (2000). "Effect of Temperature on Carbon and Electron Flow and on the Archaeal Community in Methanogenic Rice Field Soil". Applied and Environmental Microbiology. 66 (11): 4790–4797. doi:10.1128/AEM.66.11.4790-4797.2000. ISSN   0099-2240. PMC   92381 . PMID   11055925.
  23. Griffin, M. E.; McMahon, K. D.; Mackie, R. I.; Raskin, L. (1998-02-05). "Methanogenic population dynamics during start-up of anaerobic digesters treating municipal solid waste and biosolids". Biotechnology and Bioengineering. 57 (3): 342–355. doi:10.1002/(sici)1097-0290(19980205)57:3<342::aid-bit11>3.0.co;2-i. ISSN   0006-3592. PMID   10099211.
  24. Smith, Kerry S.; Ingram-Smith, Cheryl (2007). "Methanosaeta, the forgotten methanogen?". Trends in Microbiology. 15 (4): 150–155. doi:10.1016/j.tim.2007.02.002. ISSN   0966-842X. PMID   17320399.