Muscina

Last updated

Muscina
Fly August 2008-3.jpg
Adult Muscina stabulans
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Arthropoda
Class: Insecta
Order: Diptera
Family: Muscidae
Subfamily: Azeliinae
Tribe: Reinwardtiini
Genus: Muscina
Robineau-Desvoidy, 1830 [1]
Type species
M. stabulans
Fallén, 1817 [2]

Muscina is a genus of flies that belongs to the family Muscidae, currently consisting of 27 species. [3] They are worldwide in distribution and are frequently found in livestock facilities and outside restrooms. The most common species are M. stabulans (the most widely studied species), M. levida, and M. prolapsa. Muscina flies commonly breed in manure and defecate on food, which has been linked to the spread of some disease and illnesses. [4] [5] The occurrence of Muscina larvae on dead bodies has led to their regular use in forensic investigations, as they may be used to estimate the time of death. [6] Research have shown the prevalence of certain species of Muscina flies as vectors of diseases such as poliomyelitis. [7]

Contents

Characteristics

Muscina species are characterized by a retractable proboscis, sponging or sucking mouthparts, and a pale tip on the scutellum. [8] [4] The species M. stabulans and M. levida are larger than the housefly, and have moderately curved fourth veins with the latter also having a black palpi. The species M. levida has legs that are entirely black. M. pascuorum flies have a red palpi, a strongly curved fourth vein that ends in or before the wing tip, and are generally larger than M. levida. [8]

Life cycle

Muscina species undergo the same transformations throughout the life cycle as similar species and families in the order Diptera. Flies in the Dipteran order undergo what is known as holometabolous transformation, a type of metabolic transformation in which an insect starts out as an egg, undergoes larval stages, and then pupates before reaching full adulthood. The adult insect is referred to as an imago. [9]

Eggs and larvae

Flies are completely wingless at the beginning of development. In normal fly production there can be as many as 250 eggs laid by a mature female. [10] The adult female keeps the eggs inside the abdomen until all of the eggs are produced and then lays the eggs through an ovipositor located on the hind end of the abdomen.

Muscina flies mating Flies mating May 2008-2.jpg
Muscina flies mating

These eggs are very small in size. Female adult flies usually choose decaying matter as sites to lay the eggs. These nutrient-rich areas are ideal for the growth and development of the hatching larvae. In contrast to adult flies, the larvae do not have a definite head. Instead, there are two grasping hooks that they use to cut and tear food. [11] The larvae of Muscina have 11 segments. At the posterior end of the larvae are a set of spiracles. The spiracles of Muscina have spiracular slits that are not straight and exhibit some form of curvature. [12] Larvae use the spiracles to breathe. The spiracles have a number of slits that can be used to determine what instar, or larval stage, the larvae are in; for example, one slit means first instar, two slits means second instar, and three slits means third instar. [11] It has been shown that the environmental temperature has a strong influence on larval development: increasing temperature directly influences the amount of time that the larvae need to complete development. [13]

Pupa

After the larval phase, the Muscina larvae pass through a pupal stage. In this stage, there are many transformations that occur, such as the formation of legs, head, and wings. Simultaneously, a protective layer builds up and forms a cocoon, which aids in protection of the vital organs of the fly. M. levida is a species in this genus that does not form a cocoon. The duration of the pupal stage also varies depending on the temperature of the surrounding environment. [13]

Adults

After sufficient time for pupal development has elapsed, the fly will be able to break out of its hard pupa shell, and the fly's wings begin to spread. Although completely formed in the pupa stage, the adult's wings do not reach its full size until outside the pupa covering. Through the use of blood vessels inside the wings, the fly is able to expand to full width and length and complete its life cycle. [11]

Medical importance

Muscina fly with a drop of regurgitated fluid Fly December 2007-12.jpg
Muscina fly with a drop of regurgitated fluid

Some insects have been shown to be potential carriers of pathogenic agents that can cause diseases. Mosquitoes and ticks as well as certain species of Muscina flies have been revealed to be possible vectors. M. stabulans, along with almost two dozen other species of flies have been named the “disease-causing flies.” [14] Species of flies such as M. stabulans can spread bacterial and viral pathogens via transfer from its feet or mouthparts. Adult female flies tend to lay eggs in decaying material such as food or dead organisms and fresh fecal material. The fecal material houses a vast number of pathogenic bacteria, viruses, protozoan and other disease-causing agents. Most of the bacteria and viruses are not introduced from the fecal material to the fly when in the egg or larvae form; rather, the transfer occurs in the transition of a young fly to adulthood. Fecal particles attach to the fly's outer body as it emerges from the larvae. Transfer of bacteria occurs when the fly takes off and lands on an open wound or food material. Physical contact flakes the pathogen off the fly's body and causes contamination. The spread of a pathogen by means of a fly's outer body, such as its feet, to the host, is referred to as mechanical transmission. It is possible to determine the identify pathogen carried by identifying the species of fly. In these instances, food sanitation is an important preventive measure to ensure food safety. [15] Moreover, a study of flies including M. stabulans and M. levida has shown that fly incidence peaked about 45 months before the occurrence of a poliomyelitis epidemic. This time period matches the time it takes for the infective agent to incubate in a human plus the extra time necessary for the fly to acquire and incubate the virus in its body. [7]

Forensic importance

M. stabulans and M. levida belong to the ecological group of the filth fly. [16] Muscina flies are attracted to decaying organic matter, and are commonly found on corpses, urine, and feces. Muscina flies are useful in determining post-mortem intervals. The presence of Muscina larvae in diapers and on genitalia can indicate a timeline for the period of neglect in infant or elderly death cases. From the second instar phase onwards, M. stabulans are predacious upon other larvae, and will eat other forensically important arthropods. [17] Presence of the false stable fly larvae on buried bodies enables investigators to estimate the time of death. The antennae of the false stable fly can detect buried bodies. In these cases, the fly lays its eggs on top of the soil, and the hatching larvae will then burrow and invade the corpse. The false stable fly will also lay its eggs in blood, even in the absence of a body. [18] The presence of eggs in blood allows entomologists to estimate the time of injury, which helps investigators and crime scene investigators. Muscina stabulans are found on corpses in autumn and winter. In one experiment, M. stabulans larvae were found on a rabbit corpse two days after death. M. stabulans are present in the fresh stage, but are predominantly found in the adipocere-like stage, characterized by the hydrolysis of the carcass’ fatty tissue. In this phase, the carcass loses its shape and is a mass of hair, fat, skin, and cartilage. The skin eventually becomes rigid, protecting the larvae on the carcass and the insects living underneath the carcass. [19]

Myiasis

Myiasis is the feeding on live humans and vertebrates by dipterous fly larvae.

Human

Muscina flies are rarely seen on the skin of living mammals, but there has been one reported case where a Muscina species alone caused cutaneous myiasis in a human. A nine-year-old girl from Minnesota was reported with a lump on her wrist that was reddened and elevated, but showed no signs of any external openings or of containing any pus inside. A vaseline bandage was applied after some blood was extracted, and the lump was soaked in hot water several times. Twelve hours later, a worm was found in the cut after removing the bandage. Several other small lesions were noticeable around the proximity of the cut, but they receded at about this time. The girl recovered after applying a hot pack to the lesion. The larvae were confirmed by M. T. James of the State College of Washington and C. W. Sabrosky and W. W. Wirth of the United States National Museum to be a Muscina fly, most likely M. levida. [20]

Muscina stabulans was reported in a case of intestinal myiasis. A twenty-year-old Indian man experienced abdominal discomfort, bloated abdomen, and intestinal hurrying after meals. Larvae of M. stabulans were found in the man's stool. [12]

Sheep

In certain parts of the world where sheep production is important, ovine myiasis by certain dipteran species is a major concern. Areas where ruminant myiasis are problematic are Australia, Southern Africa, and the British Isles. M. prolapsa along with other dipteran flies have been identified in cases in southwestern Scotland. [21]

Ongoing research

Current research have delved into the role Muscina flies play in forensics. Muscina stabulans was found to be an important fly in the determination of post-mortem intervals (PMI) in the Rio Grande do Sul state in southern Brazil. M. stabulans show up during the adipocere-like stage of decomposition whereby the carcass loses its natural shape due to hydrolysis of the fatty tissue. Moreover, M. stabulans appearance on bodies in large numbers during the autumn and winter months is useful in narrowing down time of death. [19]

Species

Related Research Articles

<span class="mw-page-title-main">Forensic entomology</span> Application of insect and other arthropod biology to forensics

Forensic entomology is the scientific study of the colonization of a dead body by arthropods. This includes the study of insect types commonly associated with cadavers, their respective life cycles, their ecological presences in a given environment, as well as the changes in insect assemblage with the progression of decomposition. Insect succession patterns are identified based on the time a given species of insect spends in a given developmental stage, and how many generations have been produced since the insects introduction to a given food source. Insect development alongside environmental data such as temperature and vapor density, can be used to estimate the time since death, due to the fact that flying insects are attracted to a body immediately after death. The identification of postmortem interval to aid in death investigations is the primary scope of this scientific field. However, forensic entomology is not limited to homicides, it has also been used in cases of neglect and abuse, in toxicology contexts to detect the presence of drugs, and in dry shelf food contamination incidents. Equally, insect assemblages present on a body, can be used to approximate a given location, as certain insects may be unique to certain areas. Therefore, forensic entomology can be divided into three subfields: urban, stored-product and medico-legal/medico-criminal entomology.

<span class="mw-page-title-main">Calliphoridae</span> Family of insects in the Diptera order

The Calliphoridae are a family of insects in the order Diptera, with almost 1,900 known species. The maggot larvae, often used as fishing bait, are known as gentles. The family is known to be polyphyletic, but much remains disputed regarding proper treatment of the constituent taxa, some of which are occasionally accorded family status.

<span class="mw-page-title-main">Common green bottle fly</span> Species of insect

The common green bottle fly is a blowfly found in most areas of the world and is the most well-known of the numerous green bottle fly species. Its body is 10–14 mm (0.39–0.55 in) in length – slightly larger than a house fly – and has brilliant, metallic, blue-green or golden coloration with black markings. It has short, sparse, black bristles (setae) and three cross-grooves on the thorax. The wings are clear with light brown veins, and the legs and antennae are black. The larvae of the fly may be used for maggot therapy, are commonly used in forensic entomology, and can be the cause of myiasis in livestock and pets. The common green bottle fly emerges in the spring for mating.

<i>Chrysomya putoria</i> Species of fly

Chrysomya putoria, also known as the tropical African latrine blowfly, is a fly species belonging to the blowfly family, Calliphoridae.C. putoria is native to Africa and has recently spread to the Americas. These flies pose significant health risks, especially due to their close association with human settlements. Adult flies can carry pathogens, while larvae may cause myiasis by growing and feeding on the flesh of domestic animals and humans. Other myiasis-causing flies in the same genus are C. bezziana and C. megacephala. C. putoria and other flies that feed on decomposing tissue are used as important tools in forensic entomology to establish the post-mortem interval, or the time elapsed since death.

<i>Cynomya mortuorum</i> Species of fly

Cynomya mortuorum belongs to the order Diptera, sometimes referred to as "true flies". In English, the only common name occasionally used is "fly of the dead". It has a bluish-green appearance, similar to other Calliphoridae and is found in multiple geographic locations with a preference for colder regions. Belonging to the family Calliphoridae, it has been shown to have forensically relevant implications due to its appearance on carrion. Current research is being done to determine C. mortuorum's level of importance and usage within forensic entomology.

<i>Chrysomya</i> Genus of flies

Chrysomya is an Old World blow fly genus of the family Calliphoridae. The genus Chrysomya contains a number of species including Chrysomya rufifacies and Chrysomya megacephala. The term “Old World blow fly” is a derivative of both the associated family, Calliphoridae, and the belief that the genus Chrysomya originated in Asia and migrated to North America only relatively recently. Chrysomya’s primary importance to the field of medico-criminal forensic entomology is due to the genus’ reliable life cycle, allowing investigators to accurately develop a postmortem interval. Chrysomya adults are typically metallic colored with thick setae on the meron and plumose arista. The name comes from the word chrysos, meaning “golden” in reference to the metallic sheen of the genus’ species, and -mya, a derivation from the word myia, meaning “fly”.

<i>Chrysomya rufifacies</i> Species of fly

Chrysomya rufifacies is a species belonging to the blow fly family, Calliphoridae, and is most significant in the field of forensic entomology due to its use in establishing or altering post mortem intervals. The common name for the species is the hairy maggot blow fly, and it belongs to the genus Chrysomya, which is commonly referred to as the Old World screwworms. This genus includes other species such as Chrysomya putoria and Chrysomya bezziana, which are agents of myiasis. C. rufifacies prefers very warm weather and has a relatively short lifecycle. It is widely distributed geographically and prefers to colonize large carcasses over small ones. The species commonly has a greenish metallic appearance and is important medically, economically, and forensically.

<i>Lucilia illustris</i> Species of insect

Lucilia illustris is a member of the fly family Calliphoridae, commonly known as a blow fly. Along with several other species, L. illustris is commonly referred to as a green bottle fly. Lucilia illustris is typically 6–9 mm in length and has a metallic blue-green thorax. The larvae develop in three instars, each with unique developmental properties. The adult fly typically will feed on flowers, but the females need some sort of carrion protein in order to breed and lay eggs.

<i>Phormia regina</i> Species of fly

Phormia regina, the black blow fly, belongs to the blow fly family Calliphoridae and was first described by Johann Wilhelm Meigen.

Entomological evidence is legal evidence in the form of insects or related artifacts and is a field of study in forensic entomology. Such evidence is used particularly in medicolegal and medicocriminal applications due to the consistency of insects and arthropods in detecting decomposition quickly. Insect evidence is customarily used to determine post-mortem interval (PMI) but can also be used as evidence of neglect or abuse. It can indicate how long a person was abused/neglected as well as provide important insights into the amount of bodily care given to the neglected or abused person.

<i>Chrysomya megacephala</i> Species of fly

Chrysomya megacephala, more commonly known as the oriental latrine fly or oriental blue fly, is a member of the family Calliphoridae (blowflies). It is a warm-weather fly with a greenish-blue metallic box-like body. The fly infests corpses soon after death, making it important to forensic science. This fly is implicated in some public health issues; it can be the cause of myiasis, and also infects fish and livestock.

<i>Sarcophaga pernix</i> Species of fly

Sarcophaga pernix, also known as the red-tailed flesh fly, is a fly in the Sarcophagidae family. This fly often breeds in carrion and feces, making it a possible vector for disease. The larvae of this species can cause myiasis, as well as accidental myiasis. It is potentially useful in forensic entomology.

Compsomyiops callipes, previously known as Paraluclia wheeleri, is a member of the blowfly family Calliphoridae. It is a warm weather fly that can be found in southwestern parts of the United States and parts of South America. This species can be identified by its chaetotaxy, metallic blue color, club-shaped palp, and brown calypters.

<i>Synthesiomyia nudiseta</i> Species of fly

Synthesiomyia nudiseta is one of the largest flies in the family Muscidae. The fly has a pair of forewings; the paired hind wings have been reduced to halteres that help with stability and movement during flight. Key characteristics of this species include plumose segmented aristae, well-developed calypters, and sternopleural bristles. Synthesiomyia nudiseta is a forensically important species because it is necrophilous and can therefore help determine the time of colonization for the post mortem interval with its known life cycle.

<i>Calliphora livida</i> Species of fly

Calliphora livida is a member of the family Calliphoridae, the blow flies. This large family includes the genus Calliphora, the "blue bottle flies". This genus is important in the field of forensic entomology because of its value in post-mortem interval estimation.

<i>Lucilia coeruleiviridis</i> Species of fly

Lucilia coeruleiviridis, formerly Phaenecia coeruleiviridis, is commonly known as a green bottle fly, because of its metallic blue-green thorax and abdomen. L. coeruleiviridis was first discovered by French entomologist Pierre-Justin-Marie Macquart in 1855. It belongs to the family Calliphoridae and is one of many forensically important Diptera, as it is often found on decaying substances. L. coeruleiviridis is one of the most ubiquitous blow fly species in the southeastern United States, particularly in the spring and fall months.

<i>Protophormia terraenovae</i> Species of fly

Protophormia terraenovae is commonly called northern blowfly, blue-bottle fly or blue-assed fly. It is distinguished by its deep blue coloration and large size and is an important species throughout the Northern Hemisphere. This fly is notable for its economic effect as a myiasis pest of livestock and its antibiotic benefits in maggot therapy. Also of interest is P. terraenovae’s importance in forensic investigations: because of their temperature-dependent development and their prominent presence on corpses, the larvae of this species are useful in minimum post-mortem interval (mPMI) determination.

Calliphora latifrons is a species of blue bottle fly.

Calliphora loewi is part of the family Calliphoridae, bottle flies and blowflies, and in the genus Calliphora, blue bottle flies. The genus can be deceiving since C. loewi is not blue. Though this species is rare, it can play an important part in forensic entomology, spreading disease, and decomposing carrion. The life cycle of C. loewi is similar to the life cycle of the genus Calliphora. Since this species is rare there has not been very much research done with this species.

<i>Muscina stabulans</i> Species of fly

Muscina stabulans, commonly known as the false stable fly, is a fly from the family Muscidae.

References

  1. Robineau-Desvoidy, André Jean Baptiste (1830). "Essai sur les myodaires". Mémoires presentés à l'Institut des Sciences, Lettres et Arts, par divers savants et lus dans ses assemblées: Sciences, Mathématiques et Physique. 2 (2): 1–813. Retrieved 15 July 2018.
  2. Coquillett, D.W. (1901). "Types of anthomyid genera". Journal of the New York Entomological Society. 9 (3): 134–146. JSTOR   25002949.
  3. 1 2 3 4 5 6 "ITIS Standard Report Page: Muscina." Integrated Taxonomic Information System. 20 Mar. 2009 <https://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&search_value=150028>
  4. 1 2 "False Stable Fly." North Carolina IPM. 20 Mar. 2009 <http://ipm.ncsu.edu/AG369/notes/false_stable_fly.html>
  5. "Fly Control In Confined Livestock And Poultry Production - Novartis Animal Health Inc." The Control Of Flies On Livestock And Poultry Farms - Novartis Animal Health Inc. 20 Mar. 2009
  6. White, Richard E. (1998). A Field Guide to the Beetles of North America. New York, New York: Houghton Mifflin Harcourt. pp. 208–214. ISBN   978-0-395-91089-4.
  7. 1 2 Power, Maxwell E.; Melnick, Joseph L. (October 1945). "A Three-year Survey of the Fly Population in New Haven During Epidemic and Non-epidemic Years for Poliomyelitis". The Yale Journal of Biology and Medicine. 18 (1): 55–69. PMC   2601852 . PMID   21434247.
  8. 1 2 Dodge, Harold R. (1953). "Identifying common flies". Public Health Reports. 68 (3): 345–350. doi:10.2307/4588414. JSTOR   4588414. PMC   2023985 . PMID   13037962.
  9. "Metamorphosis - A remarkable change". Insects. Archived from the original on 2006-04-22. Retrieved 2006-04-22.
  10. "Decomposition: Fly eggs." 11 Mar. 2009 <http://www.deathonline.net/decomposition/corpse_fauna/flies/eggs.htm>
  11. 1 2 3 "dipteran (insect) -- Britannica Online Encyclopedia" . Retrieved 2009-04-01.
  12. 1 2 Srinivasan, R; Sureshbabu, L; Chand, P; Shanmugam, J; Gopal, R; Shivekar, S; Senthil, K (2008). "Intestinal myiasis caused by Muscina stabulans". Indian Journal of Medical Microbiology. 26 (1): 83–5. doi: 10.1016/S0255-0857(21)02003-X . hdl: 1807/53547 . PMID   18227609.
  13. 1 2 Mascarini, Luciene Maura; Prado, Ângelo Pires do (2002). "Thermal Constant of an Experimental Population of Muscina stabulans (Fallén 1817) (Diptera:Muscidae) in the Laboratory" (PDF). Memórias do Instituto Oswaldo Cruz. 97 (2): 281–283. doi:10.1590/s0074-02762002000200026. PMID   12016459.
  14. "www.killgerm.com" (PDF). Archived from the original (PDF) on 2008-05-17. Retrieved 2009-04-01.
  15. Graczyk TK, Knight R, Tamang L (January 2005). "Mechanical Transmission of Human Protozoan Parasites by Insects". Clinical Microbiology Reviews. 18 (1): 128–32. doi:10.1128/CMR.18.1.128-132.2005. PMC   544177 . PMID   15653822.
  16. Gary R. Mullen; Lance A. Durden (2002). Medical and Veterinary Entomology. Elsevier. p. 280. ISBN   978-0-08-053607-1.
  17. "2000-07 Mark Benecke: Child neglect and forensic entomology - ForensicWiki" . Retrieved 2009-04-01.
  18. Erzinۅclioڷglu, Zakaria; Zakaria Erzinclioglu (2002). Maggots, murder, and men: memories and reflections of a forensic entomologist. New York: Thomas Dunne Books. ISBN   0-312-28774-7.
  19. 1 2 de Souza, Alex Sandro Barros; Kirst, Frederico Dutra; Krüger, Rodrigo Ferreira (2008). "Insects of forensic importance from Rio Grande do Sul state in southern Brazil". Revista Brasileira de Entomologia. 52 (4): 641–646. doi: 10.1590/S0085-56262008000400016 .
  20. Barr, A. Ralph; Thompson, John H. (1955). "A Case of Cutaneous Myiasis in a Child Caused by Muscina sp". The Journal of Parasitology. 41 (5): 552–553. doi:10.2307/3273822. JSTOR   3273822.
  21. Morris, Owen S.; Titchener, Richard N. (July 1997). "Blowfly species composition in sheep myiasis in Scotland". Medical and Veterinary Entomology. 11 (3): 253–256. doi:10.1111/j.1365-2915.1997.tb00403.x. PMID   9330256. S2CID   30393977.
  22. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 "|M. (Genus)."Welcome to ZipcodeZoo. 21 Mar. 2009<http://zipcodezoo.com/Key/Animalia/Muscina_Genus.asp#Overview Archived 2012-06-04 at the Wayback Machine >
  23. 1 2 Harris, M. (1780). An exposition of English insects. Vol. Decads III, IV. London: Robson Co. pp. 73–99, 100–138, pls. 21-30, 31–40. Retrieved 16 July 2021.

Further reading