Newton's minimal resistance problem is a problem of finding a solid of revolution which experiences a minimum resistance when it moves through a homogeneous fluid with constant velocity in the direction of the axis of revolution, named after Isaac Newton, who studied the problem in 1685 and published it in 1687 in his Principia Mathematica. [1] [ page needed ] This is the first example of a problem solved in what is now called the calculus of variations, appearing a decade before the brachistochrone problem. [2] Newton published the solution in Principia Mathematica without his derivation and David Gregory was the first person who approached Newton and persuaded him to write an analysis for him. Then the derivation was shared with his students and peers by Gregory. [3]
According to I Bernard Cohen, in his Guide to Newton’s Principia, "The key to Newton’s reasoning was found in the 1880s, when the earl of Portsmouth gave his family’s vast collection of Newton’s scientific and mathematical papers to Cambridge University. Among Newton’s manuscripts they found the draft text of a letter, … in which Newton elaborated his mathematical argument. [This] was never fully understood, however, until the publication of the major manuscript documents by D. T. Whiteside [1974], whose analytical and historical commentary has enabled students of Newton not only to follow fully Newton’s path to discovery and proof, but also Newton’s later (1694) recomputation of the surface of least resistance". [4] [5]
Even though Newton's model for the fluid was wrong as per our current understanding, the fluid he had considered finds its application in hypersonic flow theory as a limiting case. [6]
In Proposition 34 of Book 2 of the Principia, Newton wrote, "If in a rare medium, consisting of equal particles freely disposed at equal distances from each other, a globe and a cylinder described on equal diameter move with equal velocities in the direction of the axis of the cylinder, the resistance of the globe will be but half as great as that of the cylinder."
Following this proposition is a scholium containing the famous condition that the curve which, when rotated about its axis, generates the solid that experiences less resistance than any other solid having a fixed length, and width.
In modern form, Newton's problem is to minimize the following integral: [7] [8]
where represents the curve which generates a solid when it is rotated about the x-axis and .
I is the reduction in resistance caused by the particles impinging upon the sloping surface DNG, formed by rotating the curve, instead of perpendicularly upon the horizontal projection of DNG on the rear disc DA from the direction of motion, in Fig. 1. Note that the front of the solid is the disc BG, the triangles GBC and GBR are not part of it, but are used below by Newton to express the minimum condition.
This integral is related to the total resistance experienced by the body by the following relation:
The problem is to find the curve that generates the solid that experiences less resistance than any other solid having a fixed axial length = L, and a fixed width, H.
Since the solid must taper in the direction of motion, H is the radius of the disc forming the rear surface of the curve rotated about the x-axis. The units are chosen so that the constant of proportionality is unity. Also, note that , and the integral, which is evaluated between x = 0 and x = L is negative. Let y = h when x = L.
When the curve is the horizontal line, DK, so the solid is a cylinder, , the integral is zero and the resistance of the cylinder is: , which explains the constant term.
The simplest way to apply the Euler–Lagrange equation to this problem is to rewrite the resistance as:
Substituting the integrand into the Euler–Lagrange equation
Although the curves that satisfy the minimum condition cannot be described by a simple function, y = f(x), they may be plotted using p as a parameter, to obtain the corresponding coordinates (x,y) of the curves. The equation of x as a function of p is obtained from the minimum condition (1), and an equivalent of it was first found by Newton.
Differentiating: , and integrating
Since , when , and , when , the constants can be determined in terms of H, h and L. Because y from equation (1) can never be zero or negative, the front surface of any solid satisfying the minimum condition must be a disc, GB.
As this was the first example of this type of problem, Newton had to invent a completely new method of solution. Also, he went much deeper in his analysis of the problem than simply finding the condition (1).
While a solid of least resistance must satisfy (1), the converse is not true. Fig. 2 shows the family of curves that satisfy it for different values of . As increases the radius, Bg = h, of the disc at x = L decreases and the curve becomes steeper.
Directly before the minimum resistance problem, Newton stated that if on any elliptical or oval figure rotated about its axis, p becomes greater than unity, one with less resistance can be found. This is achieved by replacing the part of the solid that has p > 1 with the frustum of a cone whose vertex angle is a right angle, as shown in Fig. 2 for curve . This has less resistance than . Newton does not prove this, but adds that it might have applications in shipbuilding. Whiteside supplies a proof and contends that Newton would have used the same reasoning.
In Fig. 2, since the solid generated from the curve Dng satisfies the minimum condition and has p < 1 at g, it experiences less resistance than that from any other curve with the same end point g. However, for the curve DνΓ, with p > 1 at end point Γ, this is not the case for although the curve satisfies the minimum condition, the resistance experienced by φγ and γΓ together is less than that by φΓ.
Newton concluded that of all solids that satisfy the minimum resistance condition, the one experiencing the least resistance, DNG in Fig. 2, is the one that has p = 1 at G. This is shown schematically in Fig. 3 where the overall resistance of the solid varies against the radius of the front surface disc, the minimum occurring when h = BG, corresponding to p = 1 at G.
In the Principia, in Fig. 1 the condition for the minimum resistance solid is translated into a geometric form as follows: draw GR parallel to the tangent at N, so that , and equation (1) becomes:
At G, , , and , so which appears in the Principia in the form:
Although this appears fairly simple, it has several subtleties that have caused much confusion.
In Fig 4, assume DNSG is the curve that when rotated about AB generates the solid whose resistance is less than any other such solid with the same heights, AD = H, BG = h and length, AB = L.
Fig. 5. shows the infinitesimal region of the curve about N and I in more detail. Although NI, Nj and NJ are really curved, they can be approximated by straight lines provided NH is sufficiently small.
Let HM = y, AM = x, NH = u, and HI = w = dx. Let the tangent at each point on the curve, . The reduction of the resistance of the sloping ring NI compared to the vertical ring NH rotated about AB is (2)
Let the minimum resistance solid be replaced by an identical one, except that the arc between points I and K is shifted by a small distance to the right , or to the left , as shown in more detail in Fig. 5. In either case, HI becomes .
The resistance of the arcs of the curve DN and SG are unchanged. Also, the resistance of the arc IK is not changed by being shifted, since the slope remains the same along its length. The only change to the overall resistance of DNSG is due to the change to the gradient of arcs NI and KS. The 2 displacements have to be equal for the slope of the arc IK to be unaffected, and the new curve to end at G.
The new resistance due to particles impinging upon NJ or Nj, rather that NI is:
+ w.(terms in ascending powers of starting with the 2nd).
The result is a change of resistance of: + higher order terms, the resistance being reduced if o > 0 (NJ less resisted than NI).
This is the original 1685 derivation where he obtains the above result using the series expansion in powers of o. In his 1694 revisit he differentiates (2) with respect to w. He sent details of his later approach to David Gregory, and these are included as an appendix in Motte’s translation of the Principia.
Similarly, the change in resistance due to particles impinging upon SL or Sl rather that SK is: + higher order terms.
The overall change in the resistance of the complete solid, + w.(terms in ascending powers of starting with the 2nd).
Fig 6 represents the total resistance of DNJLSG, or DNjlSG as a function of o. Since the original curve DNIKSG has the least resistance, any change o of whatever sign, must result in an increase in the resistance. This is only possible if the coefficient of o in the expansion of is zero, so:
(2)
If this was not the case, it would be possible to choose a value of o with a sign that produced a curve DNJLSG, or DNjlSG with less resistance than the original curve, contrary to the initial assumption. The approximation of taking straight lines for the finite arcs, NI and KS becomes exact in the limit as HN and OS approach zero. Also, NM and HM can be taken as equal, as can OT and ST.
However, N and S on the original curve are arbitrary points, so for any 2 points anywhere on the curve the above equality must apply. This is only possible if in the limit of any infinitesimal arc HI, anywhere on the curve, the expression,
is a constant. (3)
This has to be the case since, if was to vary along the curve, it would be possible to find 2 infinitesimal arcs NI and KS such that (2) was false, and the coefficient of o in the expansion of would be non-zero. Then a solid with less resistance could be produced by choosing a suitable value of o.
This is the reason for the constant term in the minimum condition in (3). As noted above, Newton went further, and claimed that the resistance of the solid is less than that of any other with the same length and width, when the slope at G is equal to unity. Therefore, in this case, the constant in (3) is equal to one quarter of the radius of the front disc of the solid, .
In quantum mechanics, the particle in a box model describes a particle free to move in a small space surrounded by impenetrable barriers. The model is mainly used as a hypothetical example to illustrate the differences between classical and quantum systems. In classical systems, for example, a particle trapped inside a large box can move at any speed within the box and it is no more likely to be found at one position than another. However, when the well becomes very narrow, quantum effects become important. The particle may only occupy certain positive energy levels. Likewise, it can never have zero energy, meaning that the particle can never "sit still". Additionally, it is more likely to be found at certain positions than at others, depending on its energy level. The particle may never be detected at certain positions, known as spatial nodes.
In geometry, the tangent line to a plane curve at a given point is the straight line that "just touches" the curve at that point. Leibniz defined it as the line through a pair of infinitely close points on the curve. More precisely, a straight line is said to be a tangent of a curve y = f(x) at a point x = c if the line passes through the point (c, f ) on the curve and has slope f'(c), where f' is the derivative of f. A similar definition applies to space curves and curves in n-dimensional Euclidean space.
A finite difference is a mathematical expression of the form f (x + b) − f (x + a). If a finite difference is divided by b − a, one gets a difference quotient. The approximation of derivatives by finite differences plays a central role in finite difference methods for the numerical solution of differential equations, especially boundary value problems.
Newton's laws of motion are three basic laws of classical mechanics that describe the relationship between the motion of an object and the forces acting on it. These laws can be paraphrased as follows:
In physics, work is the energy transferred to or from an object via the application of force along a displacement. In its simplest form, it is often represented as the product of force and displacement. A force is said to do positive work if it has a component in the direction of the displacement of the point of application. A force does negative work if it has a component opposite to the direction of the displacement at the point of application of the force.
In physics and mathematics, a brachistochrone curve, or curve of fastest descent, is the one lying on the plane between a point A and a lower point B, where B is not directly below A, on which a bead slides frictionlessly under the influence of a uniform gravitational field to a given end point in the shortest time. The problem was posed by Johann Bernoulli in 1696.
The calculus of variations is a field of mathematical analysis that uses variations, which are small changes in functions and functionals, to find maxima and minima of functionals: mappings from a set of functions to the real numbers. Functionals are often expressed as definite integrals involving functions and their derivatives. Functions that maximize or minimize functionals may be found using the Euler–Lagrange equation of the calculus of variations.
In mathematics, the Hessian matrix or Hessian is a square matrix of second-order partial derivatives of a scalar-valued function, or scalar field. It describes the local curvature of a function of many variables. The Hessian matrix was developed in the 19th century by the German mathematician Ludwig Otto Hesse and later named after him. Hesse originally used the term "functional determinants".
Projectile motion is a form of motion experienced by an object or particle that is projected near Earth's surface and moves along a curved path under the action of gravity only. This curved path was shown by Galileo to be a parabola, but may also be a straight line in the special case when it is thrown directly upwards. The study of such motions is called ballistics, and such a trajectory is a ballistic trajectory. The only force of mathematical significance that is actively exerted on the object is gravity, which acts downward, thus imparting to the object a downward acceleration towards the Earth’s center of mass. Because of the object's inertia, no external force is needed to maintain the horizontal velocity component of the object's motion. Taking other forces into account, such as aerodynamic drag or internal propulsion, requires additional analysis. A ballistic missile is a missile only guided during the relatively brief initial powered phase of flight, and whose remaining course is governed by the laws of classical mechanics.
In statistics, the k-nearest neighbors algorithm (k-NN) is a non-parametric supervised learning method first developed by Evelyn Fix and Joseph Hodges in 1951, and later expanded by Thomas Cover. It is used for classification and regression. In both cases, the input consists of the k closest training examples in a data set. The output depends on whether k-NN is used for classification or regression:
In differential geometry of curves, the osculating circle of a sufficiently smooth plane curve at a given point p on the curve has been traditionally defined as the circle passing through p and a pair of additional points on the curve infinitesimally close to p. Its center lies on the inner normal line, and its curvature defines the curvature of the given curve at that point. This circle, which is the one among all tangent circles at the given point that approaches the curve most tightly, was named circulus osculans by Leibniz.
The Schrödinger–Newton equation, sometimes referred to as the Newton–Schrödinger or Schrödinger–Poisson equation, is a nonlinear modification of the Schrödinger equation with a Newtonian gravitational potential, where the gravitational potential emerges from the treatment of the wave function as a mass density, including a term that represents interaction of a particle with its own gravitational field. The inclusion of a self-interaction term represents a fundamental alteration of quantum mechanics. It can be written either as a single integro-differential equation or as a coupled system of a Schrödinger and a Poisson equation. In the latter case it is also referred to in the plural form.
In classical mechanics, the shell theorem gives gravitational simplifications that can be applied to objects inside or outside a spherically symmetrical body. This theorem has particular application to astronomy.
Nanoindentation, also called instrumented indentation testing, is a variety of indentation hardness tests applied to small volumes. Indentation is perhaps the most commonly applied means of testing the mechanical properties of materials. The nanoindentation technique was developed in the mid-1970s to measure the hardness of small volumes of material.
In differential calculus, there is no single uniform notation for differentiation. Instead, various notations for the derivative of a function or variable have been proposed by various mathematicians. The usefulness of each notation varies with the context, and it is sometimes advantageous to use more than one notation in a given context. The most common notations for differentiation are listed below.
In classical mechanics, Newton's theorem of revolving orbits identifies the type of central force needed to multiply the angular speed of a particle by a factor k without affecting its radial motion. Newton applied his theorem to understanding the overall rotation of orbits that is observed for the Moon and planets. The term "radial motion" signifies the motion towards or away from the center of force, whereas the angular motion is perpendicular to the radial motion.
The McCumber relation is a relationship between the effective cross-sections of absorption and emission of light in the physics of solid-state lasers. It is named after Dean McCumber, who proposed the relationship in 1964.
In mathematics, the differential geometry of surfaces deals with the differential geometry of smooth surfaces with various additional structures, most often, a Riemannian metric. Surfaces have been extensively studied from various perspectives: extrinsically, relating to their embedding in Euclidean space and intrinsically, reflecting their properties determined solely by the distance within the surface as measured along curves on the surface. One of the fundamental concepts investigated is the Gaussian curvature, first studied in depth by Carl Friedrich Gauss, who showed that curvature was an intrinsic property of a surface, independent of its isometric embedding in Euclidean space.
In physics, Lagrangian mechanics is a formulation of classical mechanics founded on the stationary-action principle. It was introduced by the Italian-French mathematician and astronomer Joseph-Louis Lagrange in his 1788 work, Mécanique analytique.
In classical mechanics, the central-force problem is to determine the motion of a particle in a single central potential field. A central force is a force that points from the particle directly towards a fixed point in space, the center, and whose magnitude only depends on the distance of the object to the center. In many important cases, the problem can be solved analytically, i.e., in terms of well-studied functions such as trigonometric functions.