A night-vision device (NVD), also known as a night optical/observation device (NOD) or night-vision goggle (NVG), is an optoelectronic device that allows visualization of images in low levels of light, improving the user's night vision.
The device enhances ambient visible light and converts near-infrared light into visible light which can then be seen by humans; this is known as I2 (image intensification). By comparison, viewing of infrared thermal radiation is referred to as thermal imaging and operates in a different section of the infrared spectrum.
A night vision device usually consists of an image intensifier tube, a protective housing, and an optional mounting system. Many NVDs also include a protective sacrificial lens, mounted over the front/objective lens to prevent damage by environmental hazards, [1] while some incorporate telescopic lenses. An NVD image is typically monochrome green, as green was considered to be the easiest color to see for prolonged periods in the dark. [2] Night vision devices may be passive, relying solely on ambient light, or may be active, using an IR (infrared) illuminator.
Night vision devices may be handheld or attach to helmets. When used with firearms, an IR laser sight is often mounted to the weapon. The laser sight produces an infrared beam that is visible only through an NVD and aids with aiming. [3] Some night vision devices are made to be mounted to firearms. These can be used in conjunction with weapon sights or standalone; some thermal weapon sights have been designed to provide similar capabilities. [4]
These devices were first used for night combat in World War II and came into wide use during the Vietnam War. [5] The technology has evolved since then, involving "generations" [6] of night-vision equipment with performance increases and price reductions. Consequently, though they are commonly used by military and law enforcement agencies, night vision devices are available to civilian users for applications including aviation, driving, and demining. [7]
In 1929 Hungarian physicist Kálmán Tihanyi invented an infrared-sensitive electronic television camera for anti-aircraft defense in the UK. [8] Night vision technology prior to the end of World War II was later described as Generation 0. [5]
Night-vision devices were introduced in the German Army as early as 1939[ citation needed ] and were used in World War II. AEG started developing its first devices in 1935. In mid-1943, the German Army began testing infrared night-vision devices and telescopic rangefinders mounted on Panther tanks. Two arrangements were constructed. The Sperber FG 1250 ("Sparrow Hawk"), with a range of up to 600 m, had a 30 cm infrared searchlight and an image converter operated by the tank commander.
From late 1944 to March 1945 the German military conducted successful tests of FG 1250 sets mounted on Panther Ausf. G tanks (and other variants). During the war, approximately 50 (or 63) Panthers were equipped with the FG 1250 and saw combat on both the Eastern and Western Fronts. The "Vampir" man-portable system for infantry was used with StG 44 assault rifles. [9]
Parallel development occurred in the US. The M1 and M3 infrared night-sighting devices, also known as the "sniperscope" or "snooperscope", saw limited service with the US Army in World War II [10] and in the Korean War, to assist snipers. [5] These were active devices, using an infrared light source to illuminate targets. Their image-intensifier tubes used an anode and an S-1 photocathode, made primarily of silver, cesium, and oxygen, and electrostatic inversion with electron acceleration produced gain. [11]
An experimental Soviet device called the PAU-2 was field-tested in 1942.
In 1938 the British Admiralty assumed responsibility for British military infra-red research. They worked first with Philips until the fall of the Netherlands, then with Philips' UK subsidiary Radio Transmission Equipment Ltd., and finally with EMI, who in early 1941 provided compact, lightweight image converter tubes. By July 1942 the British had produced a binocular apparatus called 'Design E'. This was bulky, needing an external power pack generating 7,000 volts, but saw limited use with amphibious vehicles of 79th Armoured Division in the 1945 crossing of the Rhine. Between May and June 1943, 43rd (Wessex) Infantry Division trialled man-portable night vision sets, and the British later experimented with mounting the devices to Mark III and Mark II(S) Sten submachine guns. However, by January 1945 the British had only made seven infra-red receiver sets. Although some were sent to India and Australia for trials before the end of 1945, by the Korean War and Malayan Emergency the British were using night vision equipment supplied by the United States. [12]
Early examples include:
After World War II, Vladimir K. Zworykin developed the first practical commercial night-vision device at Radio Corporation of America, intended for civilian use. Zworykin's idea came from a former radio-guided missile. [15] At that time, infrared was commonly called black light , a term later restricted to ultraviolet. Zworykin's invention was not a success due to its large size and high cost. [16]
First-generation passive devices developed by the US Army in the 1960s were introduced during the Vietnam War. They were an adaptation of earlier active technology and relied on ambient light instead of using an extra infrared light source. Using an S-20 photocathode, their image intensifiers amplified light around 1,000-fold, [17] but they were quite bulky and required moonlight to function properly.
Examples:
1970s second-generation devices featured an improved image-intensifier tube using a micro-channel plate (MCP) [21] with an S-25 photocathode. [11] This produced a much brighter image, especially around the edges of the lens. This led to increased clarity in low ambient-light environments, such as moonless nights. Light amplification was around 20,000. [17] Image resolution and reliability improved.
Examples:
Later advances brought GEN II+ devices (equipped with better optics, SUPERGEN tubes, improved resolution and better signal-to-noise ratios), though the label is not formally recognized by the NVESD. [24]
Third-generation night-vision systems, developed in the late 1980s, maintained the MCP from Gen II, but used a gallium arsenide photocathode, with improved resolution. GA photocathodes are primarily manufactured by L3Harris Technologies and Elbit Systems of America and imaged light from 500-900 nm. [25] In addition, the MCP was coated with an ion barrier film to increase tube life. However, the ion barrier allowed fewer electrons to pass through. The ion barrier increased the "halo" effect around bright spots or light sources. Light amplification (and power consumption) with these devices improved to around 30,000–50,000. [17]
Examples:
Autogating (ATG) rapidly switches the power supply's voltage to the photocathode on and off. These switches are rapid enough that they are not detectable to the human eye and peak voltage supplied to the night vision device is maintained. [29] This reduces the "duty cycle" (ie. the amount of time that the tube has power running through it) which increases the device's lifespan. [30] Autogating also enhances the Bright-Source Protection (BSP), which reduces the voltage supplied to the photocathode in response to ambient light levels. Automatic Brightness Control (ABC) modulates the amount of voltage supplied to the microchannel plate (rather than the photocathode) in response to ambient light. Together, BSP and ABC (alongside autogating) serves to prevent temporary blindness for the user and prevent damage to the tube when the night vision device is exposed to sudden bright sources of light, [29] like a muzzle flash or artificial lighting. [30] These modulation systems also help maintain a steady illumination level in the user's view that improves the ability to keep "eyes on target" in spite of temporary light flashes. These functions are especially useful for pilots, soldiers in urban environments, and special operations forces who may be exposed to rapidly changing light levels. [30] [31]
OMNI, or OMNIBUS, refers to a series of contracts through which the US Army purchased GEN III night vision devices. This started with OMNI I, which procured AN/PVS-7A and AN/PVS-7B devices, then continued with OMNI II (1990), OMNI III (1992), OMNI IV (1996), OMNI V (1998), OMNI VI (2002), OMNI VII (2005), [32] OMNI VIII, and OMNI IX. [33]
However, OMNI is not a specification. The performance of a particular device generally depends upon the tube which is used. For example, a GEN III OMNI III MX-10160A/AVS-6 tube performs similarly to a GEN III OMNI VII MX-10160A/AVS-6 tube, even though the former was manufactured in ~1992 and the latter ~2005. [33] [34]
One particular technology, PINNACLE is a proprietary thin-film microchannel plate technology created by ITT that was included in the OMNI VII contract. The thin-film improves performance. [34]
GEN III OMNI V–IX devices developed in the 2000s and onward can differ from earlier devices in important ways:
The consumer market sometimes classifies such systems as Generation 4, and the United States military describes these systems as Generation 3 autogated tubes (GEN III OMNI V-IX). Moreover, as autogating power supplies can be added to any previous generation of night-vision devices, autogating capability does not automatically put the devices in a particular OMNI classification. Any postnominals appearing after a generation type (i.e., Gen II+, Gen III+) indicate improvement(s) over the original specification's requirements. [37]
Examples:
Figure of merit (FoM) is a quantitative measure of a NVD's effectiveness and clarity. It is calculated using the number of line pairs per millimeter that a user can detect multiplied by the image intensifier's signal-to-noise (SNR) ratio. [39] [40] [33] [41]
In the late 1990s, innovations in photocathode technology significantly increased the SNR, with new tubes surpassing Gen 3 performance.
By 2001, the United States federal government concluded that a tube's generation was not a determinant performance factor, obsoleting the term as a basis of export regulations.
The US government has recognized the fact that the technology itself makes little difference, as long as an operator can see clearly at night. Consequently, the United States bases export regulations directly on the figure of merit.
ITAR regulations specify that US-made tubes with a FOM greater than 1400 are not exportable; however, the Defense Technology Security Administration (DTSA) can waive that policy on a case-by-case basis.
Fusion night vision combines I² (image intensification) with thermal imaging, which functions in the medium (MWIR 3-5 μm) and/or long (LWIR 8-14 μm) wavelength range. [42] Initial models appeared in the 2000s. [32] Dedicated fusion devices and clip-on imagers that add a thermal overlay to standard I² night vision devices are available. [43] Fusion combines excellent navigation and fine details (I²), with easy heat signature detection (imaging).
Fusion modes include night vision with thermal overlay, night vision only, thermal only, and others such as outline (which outlines objects that have thermal signatures) or "decamouflage", which highlights all objects that are of near-human temperature. Fusion devices are heavier and more power hungry than I²-only devices. [44]
One alternative is to use an I² device over one eye and a thermal device over the other eye, relying on the human visual system to provide a binocular combined view. [43] [45]
Out of Band (OOB) refers to night vision technologies that operate outside the 500-900 nm NIR (near infrared) frequency range. This is possible with dedicated image intensifier tubes or with clip-on devices.
Night vision devices typically have a limited field of view (FoV); the commonly used AN/PVS-14 has a FoV of 40, [66] less than the 95° monocular horizontal FoV and humans' 190° binocular horizontal FoV. [67] This forces users to turn their heads to compensate. This is particularly evident when flying, driving, or CQB, which involves split second decisions. These limitations led many SF/SOF operators to prefer white light rather than night vision when conducting CQB. [68] As a result, much time and effort has gone into research to develop a wider FoV solution. [69]
Panoramic night vision goggles (PNVG) increase FoV by increasing the number of sensor tubes. This solution adds size, weight, power requirements, and complexity. [69] An example is GPNVG-18 (Ground Peripheral Night Vision Goggle). [70] These goggles, and the aviation AN/AVS-10 PNVG from which they were derived, offer a 97° FoV. [68]
Examples:
Foveated night vision (F-NVG) uses specialized WFoV optics to increase the field of view through an intensifier tube. The fovea refers to the part of the retina which is responsible for central vision. These devices have users look "straight through" the tubes so light passing through the center of the tube falls on the foveal retina, as is the case with traditional binocular NVGs. The increased FoV comes at the price of image quality and edge distortions. [69] [71] [72] [73] Examples:
Diverging image tube (DIT) night vision increases FoV by angle the tubes slightly outward. This increases peripheral FoV but causes distortion and reduced image quality. With DIT, users are no longer looking through the center of the tubes (which provides the clearest images) and light passing through the center of the tubes no longer falls on the fovea.
Examples:
Some night vision devices, including several of the ENVG (AN/PSQ-20) models, are "digital". Introduced in the late 2000s, these allow transmission of the image, at the cost of increased size, weight, power usage. [32]
High-sensitivity digital camera technology enables NVGs that combine a camera and a display instead of an image intensifier. These devices can offer Gen-1-equivalent quality at a lower cost. [76] At the higher end, SiOnyx has produced digital color NVGs. The "Opsin" of 2022 has a form factor and helmet weight similar to an AN/PVS-14, but requires a separate battery pack. It offers a shorter battery life and lower sensitivity. [77] [78] It can however tolerate bright light and process a wider range of wavelengths. [79]
Ceramic Optical Ruggedized Engine (CORE) [80] produces higher-performance Gen 1 tubes by replacing the glass plate with a ceramic plate. This plate is produced from specially formulated ceramic and metal alloys. Edge distortion is improved, photo sensitivity is increased, and the resolution can be as high as 60 lp/mm. CORE is still designated Gen 1 as it does not utilize a microchannel plate.
A night-vision contact lens prototype places a thin strip of graphene between layers of glass that reacts to photons to brighten dark images. Prototypes absorb only 2.3% of light, which is considered not yet enough for practical use by its developers. [81]
The Sensor and Electron Devices Directorate (SEDD) of the US Army Research Laboratory developed quantum-well infrared detector (QWID). This technology's epitaxial layers use a gallium arsenide (GaAs) or aluminum gallium arsenide system (AlGaAs) which are particularly sensitive to mid-length infrared waves. The Corrugated QWID (CQWID) broadens detection capacity by using a resonance superstructure to orient more of the electric field parallel so that it can be absorbed, although cryogenic cooling between 77 K and 85 K is required. QWID technology may be appropriate for continuous surveillance viewing due to its claimed low cost and uniformity in materials but it has yet to enter commercial production. [82]
Materials from the II–VI compounds, such as HgCdTe, are used for high-performance infrared light-sensing cameras. An alternative within the III–V family of compounds is InAsSb, which is common in opto-electronics such as DVDs and mobile phones. A graded layer with increased atomic spacing and an intermediate layer of GaAs substrate can trap any potential defects. [83]
Metasurface-based upconversion technology provides a night-vision film that weighs less than a gram and can be placed across ordinary glasses. Photons pass through a resonant non-local lithium niobate metasurface with a pump beam. The metasurface boosts the photons' energy, pushing them into the visible spectrum without converting them to electrons. Cooling is not required and visible and infrared light appear in a single image. Its frequency range is 1550-nm infrared to visible 550-nm light. Because, traditionally, night-vision systems capture side-by-side views from each spectrum, they can't produce identical images unlike films applied to ordinary glasses. [84]
This section is missing information about year of introduction and amplification factor for each model, so that a rough comparison with US generations can be made.(October 2021) |
The Soviet Union, and after 1991 the Russian Federation, have developed their own night-vision devices. Models used after 1960 by the Russian/Soviet Army are designated 1PNxx (Russian:1ПНxx), where 1PN is the GRAU index of night-vision devices. The PN stands for pritsel nochnoy (Russian:прицел ночной), meaning "night sight", and the xx is the model number. Different models introduced around the same time use the same type of batteries and mounting mechanism. Multi-weapon models have replaceable elevation scales, with one scale for the ballistic arc of each. Supported weapons include the AK family, sniper rifles, light machine guns and hand-held grenade launchers.
The Russian army fielded a series of so-called counter-sniper night sights (Russian : Антиснайпер, romanized: Antisnayper). The counter-sniper night sight is an active system that uses laser pulses from a laser diode to detect reflections from the focal elements of enemy optical systems and estimate their distance: [90]
Infrared is electromagnetic radiation (EMR) with wavelengths longer than that of visible light but shorter than microwaves. The infrared spectral band begins with waves that are just longer than those of red light, so IR is invisible to the human eye. IR is generally understood to include wavelengths from around 750 nm (400 THz) to 1 mm (300 GHz). IR is commonly divided between longer-wavelength thermal IR, emitted from terrestrial sources, and shorter-wavelength IR or near-IR, part of the solar spectrum. Longer IR wavelengths (30–100 μm) are sometimes included as part of the terahertz radiation band. Almost all black-body radiation from objects near room temperature is in the IR band. As a form of electromagnetic radiation, IR carries energy and momentum, exerts radiation pressure, and has properties corresponding to both those of a wave and of a particle, the photon.
Photomultiplier tubes (photomultipliers or PMTs for short) are extremely sensitive detectors of light in the ultraviolet, visible, and near-infrared ranges of the electromagnetic spectrum. They are members of the class of vacuum tubes, more specifically vacuum phototubes. These detectors multiply the current produced by incident light by as much as 100 million times or 108 (i.e., 160 dB), in multiple dynode stages, enabling (for example) individual photons to be detected when the incident flux of light is low.
Night vision is the ability to see in low-light conditions, either naturally with scotopic vision or through a night-vision device. Night vision requires both sufficient spectral range and sufficient intensity range. Humans have poor night vision compared to many animals such as cats, dogs, foxes and rabbits, in part because the human eye lacks a tapetum lucidum, tissue behind the retina that reflects light back through the retina thus increasing the light available to the photoreceptors.
A photocathode is a surface engineered to convert light (photons) into electrons using the photoelectric effect. Photocathodes are important in accelerator physics where they are utilised in a photoinjector to generate high brightness electron beams. Electron beams generated with photocathodes are commonly used for free electron lasers and for ultrafast electron diffraction. Photocathodes are also commonly used as the negatively charged electrode in a light detection device such as a photomultiplier, phototube and image intensifier.
An image intensifier or image intensifier tube is a vacuum tube device for increasing the intensity of available light in an optical system to allow use under low-light conditions, such as at night, to facilitate visual imaging of low-light processes, such as fluorescence of materials in X-rays or gamma rays, or for conversion of non-visible light sources, such as near-infrared or short wave infrared to visible. They operate by converting photons of light into electrons, amplifying the electrons, and then converting the amplified electrons back into photons for viewing. They are used in devices such as night-vision goggles.
A laser designator is a laser light source which is used to designate a target. Laser designators provide targeting for laser-guided bombs, missiles, or precision artillery munitions, such as the Paveway series of bombs, AGM-114 Hellfire, or the M712 Copperhead round, respectively.
Many ceramic materials, both glassy and crystalline, have found use as optically transparent materials in various forms from bulk solid-state components to high surface area forms such as thin films, coatings, and fibers. Such devices have found widespread use for various applications in the electro-optical field including: optical fibers for guided lightwave transmission, optical switches, laser amplifiers and lenses, hosts for solid-state lasers and optical window materials for gas lasers, and infrared (IR) heat seeking devices for missile guidance systems and IR night vision. In commercial and general knowledge domains, it is commonly accepted that transparent ceramics or ceramic glass are varieties of strengthened glass, such as those used for the screen glass on an iPhone.
A laser pointer or laser pen is a handheld device that uses a laser diode to emit a narrow low-power visible laser beam to highlight something of interest with a small bright colored spot.
The Special Operations Peculiar MODification (SOPMOD) kit is an accessory system for the M4A1 carbine, CQBR, FN SCAR Mk 16/17, HK416 and other weapons used by United States Special Operations Command (USSOCOM) special forces units, though it is not specific to SOCOM. The kit allows US Special Operations Forces personnel to configure their weapons to individual preferences and customize for different mission requirements.
Teledyne FLIR LLC, formerly FLIR Systems Inc,, a subsidiary of Teledyne Technologies, specializes in the design and production of thermal imaging cameras and sensors. Its main customers are governments and in 2020, approximately 31% of its revenues were from the federal government of the United States and its agencies.
The AN/PVS-14 Monocular Night Vision Device (MNVD) is in widespread use by the United States Armed Forces as well as NATO allies around the world. It uses a third generation image intensifier tube, and is primarily manufactured by Litton Industries and Elbit Systems of America. It is often used 'hands free' using a head harness or attached to a combat helmet such as the PASGT, MICH TC-2000 Combat Helmet, Advanced Combat Helmet, Marine Lightweight Helmet or IHPS. It can also be used as a weapons night sight. In addition, it was part of the equipment fielded in the U.S. Army's Land Warrior program. Morovision Night Vision was the law enforcement distributor of the NEPVS-14 for ITT.
Infrared vision is the capability of biological or artificial systems to detect infrared radiation. The terms thermal vision and thermal imaging are also commonly used in this context since infrared emissions from a body are directly related to their temperature: hotter objects emit more energy in the infrared spectrum than colder ones.
AN/PVS-4 is the U.S. military designation for a specification of the first second generation passive Night vision device.
The AN/PSQ-20 Enhanced Night Vision Goggle (ENVG) is a third-generation passive monocular night vision device developed for the United States Armed Forces by ITT Exelis. It fuses image-intensifying and thermal-imaging technologies, enabling vision in conditions with very little light. The two methods can be used simultaneously or individually. The ENVG was selected by the US Army's Program Executive Office Soldier as a supporting device for the Future Force Warrior program in 2004, and is intended to replace the older AN/PVS-7 and AN/PVS-14 systems. Although more expensive and heavier than previous models, US Special Forces began using the goggles in 2008 and the US Army's 10th Mountain Division began fielding the AN/PSQ-20 in 2009. Improvements to the goggles have been attempted to make them lighter, as well as enabling the transmission of digital images to and from the battlefield.
The Institute of Optronics was a military funded research and development institute located in Rawalpindi, Punjab, Pakistan.
The AN/PVS-7 is a single tube biocular night vision device. Third-generation image intensifiers are able to be installed and are standard for military night vision. Most newer PVS-7 intensifier tubes are auto-gated to prevent image intensifier damage if exposed to intense light. The goggles have a built-in infrared Illuminator for low-light situations. They are waterproof and charged with nitrogen to prevent internal condensation while moving between extreme temperatures.
The AN/PVS-5 is a dual-tube night-vision goggle used for aviation and ground support. It uses second-generation image-intensifier tubes. The United States Army still has PVS-5 on supply but are very rarely used. The AN/PVS-5 is based on the SU-50 which was a first-generation night-vision goggle adapted by the United States Air Force in 1971. From 1972 until 1990 the AN/PVS-5 was the mainstay in US Army night vision for aviation. The AN/PVS-5C was not approved for flight because of its high-light cut off feature causing the goggle to shut off in bright light. For ground troops the AN/PVS-5 was the sole night-vision goggle until the adaptation of the improved AN/PVS-7. Photographic evidence from Operation Eagle Claw shows US military personnel at Desert One in Iran using in the AN/PVS-5 NVGs.
The AN/PVS-17 Miniature Night Sight (MNS) is a compact, lightweight and high performance night vision weapon sight. It is in wide use by the US Army Special Forces, and USMC. The AN/PVS-17 is a Generation III Night Vision Device, and uses the OMNI IV MX 10160 3rd generation image intensifier tube, it can also be used as a handheld observation device. The designation AN/PVS translates to Army/Navy Portable Visual Search, according to Joint Electronics Type Designation System guidelines.
A laser sight is a device attached or integral to a firearm to aid target acquisition. Unlike optical and iron sights where the user looks through the device to aim at the target, laser sights project a beam onto the target, providing a visual reference point.
The AN/PSQ-42 Enhanced Night Vision Goggle-Binocular (ENVG-B) is a third-generation passive binocular night vision device developed for the United States Army by L3Harris. It combines dual tube image-intensifying (I²) and thermal-imaging technologies into a single goggle, enabling vision in low-light conditions. The two methods can be used individually or simultaneously in a fused mode. The ENVG-B is intended to be issued to the dismounted combat arms soldiers within the Army's Brigade combat teams (BCT), and so far over 10,000 have been issued to several BCT's within the 1st Infantry Division, 2nd Infantry Division, 25th Infantry Division, 82nd Airborne Division and 101st Airborne Division. The US Marine Corps has also purchased 3,100 ENVG-B units.