Prospective memory is a form of memory that involves remembering to perform a planned action or recall a planned intention at some future point in time. [1] Prospective memory tasks are common in daily life and range from the relatively simple to extreme life-or-death situations. [2] Examples of simple tasks include remembering to put the toothpaste cap back on, remembering to reply to an email, or remembering to return a rented movie. Examples of highly important situations include a patient remembering to take medication or a pilot remembering to perform specific safety procedures during a flight.
In contrast to prospective memory, retrospective memory involves remembering people, events, or words that have been encountered in the past. [3] Whereas retrospective memory requires only the recall of past events, prospective memory requires the exercise of retrospective memory at a time that has not yet occurred.[ citation needed ] Prospective memory is thus considered a form of "memory of the future".
Retrospective memory involves the memory of what we know, containing informational content; prospective memory focuses on when to act, rather than focusing on informational content. [4] There is some evidence demonstrating the role of retrospective memory in the successful execution of prospective memory, but this role seems to be relatively small. [5]
There are two types of prospective memory: event-based and time-based prospective memory. [2] Event-based prospective memory involves remembering to perform certain actions when specific circumstances occur. For example, driving past the local library cues the remembrance of the need to return an overdue book. Time-based prospective memory involves remembering to perform an action at a particular point in time. [1] For example, seeing that it is 10:00 PM acts as a cue to watch a favorite television show.
Research performed by Sellen et al. (1997) compared event-based and time-based cues on prospective memory tasks. [6] The experimenters gave participants a place (event-based cue) and a time (time-based cue) and were told to press a button each time those cues appeared during the study. [6] It was found that performance on event-based tasks was better than performance on time-based tasks, even when participants took more time to think about their responses. The difference in task performance between the two types of prospective memory suggests that the intended action was better triggered by external cues of the event-based task than internal cues of the time-based task. [6] External cues, as opposed to internal cues, act as a prompt for better performance, making it easier to complete event-based tasks.
McDaniel et al. (2004) further distinguished event-based prospective memory into immediate-execute tasks and delayed-execute tasks. [5] Immediate-execute tasks involve a response as soon as a particular cue is noticed, while delayed-execute tasks involve delays between the perception of the relevant cue and the performance of the intended action. Delayed-execute tasks more commonly occur in real life when circumstances of a situation prevent intermediate action once the cue has been perceived. Research was performed by McDaniel et al. (2004), in which participants completed tasks involving various delays and interruptions between cues and responses. [5] It was demonstrated that correct performance suffered when there was a delay or interruption during a task. However, it was further shown that the use of reminders for participants eliminated the effects of the interruption task. [5]
Prospective memory received wide attention when Ulric Neisser included a paper presented by John A. Meacham at the 1975 American Psychological Association meeting in Chicago in his 1982 edited volume, Memory Observed: Remembering in Natural Contexts. [7] [8] Previously, this paper and three other articles by Meacham had received little notice. [9] [10] [11] Meacham defined prospective memory as information with implications for actions to be performed in the future, such as stopping at the store on the way home, and distinguished it from retrospective memory, concerned solely with recall of information from the past. Meacham was the first to introduce this distinction, along with the term prospective memory. [12]
There is great interest about the possible mechanisms and resources that underlie the workings of prospective memory.
The preparatory attentional and memory (PAM) theory proposes two types of processes involved in successful prospective memory performance. [1] The first component of this theory involves a monitoring process that begins when a person constructs an intention that is then maintained until it is performed. This monitoring component involves a capacity-consuming process, similar to those used when maintaining attention, because there is a need for the intention to be stored and maintained in memory. The second component involves the use of elements of retrospective memory processes. [13] These elements are used to differentiate between the wanted prospective memory intention and unwanted thoughts, in an attempt to keep focus on the goal and not the other options surrounding it. Retrospective memory is also used to remember specifically what intention is supposed to be performed in the future, and the monitoring process is needed to be able to remember to perform this action at the correct condition or time. [13]
According to this theory, prospective memory should be enhanced when complete attention is given to the desired task than when attention is divided among multiple tasks. Research conducted by McDaniel et al. (1998) attempted to prove that prospective memory performance is better on focused tasks as opposed to those where attention is split. [14] Subjects completed a prospective memory task in either a condition where full attention was given or a condition where attention was divided on other tasks. The results were consistent with the PAM theory, showing that participants' prospective memory performance was better with full attention. [14]
However, there is a lot of scepticism that the rather complex mechanisms of the PAM theory are required for all, sometimes mundane, prospective memory tasks. In research by Reese and Cherry (2002), participants formed an intention to act in the future, but were interrupted prior to acting on their intention when the cue was present. When participants were asked their thoughts at the moment of interruption, only 2% reported that they were thinking of the original intention. [15] This demonstrated evidence against the PAM theory, that there is constant maintenance from the time of constructing the intention to acting upon it at the right circumstance.
Further research conducted by Einstein and McDaniel in 1990, found that subjects during prospective memory tasks reported that their intention often "popped" into mind, instead of being constantly monitored and consciously maintained. [16] Along similar lines, a theory was proposed in 2000, called the reflexive-associative theory, which states that when people create an intention for a prospective memory task, they make an association between the target cue and the intended action. Later when the target cue occurs, the automatic associative-memory system triggers the retrieval of the intended action and brings it back into conscious awareness. [17] Therefore, as long as the target cue occurs, the association previously made will initiate the retrieval of the intended action, regardless of whether the intention is in consciousness.
Another theory that has been used to explain the mechanisms of prospective memory is the multi-process model proposed by McDaniel and Einstein (2005). [18] This theory states that prospective memory retrieval does not always need an active monitoring process but can occur spontaneously (i.e., the occurrence of a cue can cause the intention to be retrieved, even when no preparatory attentional processes are engaged). Therefore, multiple processes can be used for successful prospective memory. Further, it was believed that it would be maladaptive to rely solely on active monitoring because it requires a lot of attentional resources. This may potentially interfere with other forms of processing that are required for different tasks during the retention interval. [18]
Prospective memory cues will lead to spontaneous retrieval of an intention when at least one of four conditions is met: the cue and target action are highly associated with each other, the cue is salient, the other processes performed during the period between cue and action of the prospective memory task direct attention to relevant cue features (e.g., task appropriate processing), or the intended action is simple. Further research has found that although many aspects of prospective memory tasks are automatic, they do involve a small amount of processing. [19] An experiment conducted by Einstein et al. (2005) found that some participants performed slower on a filler task when performing a prospective memory task at the same time. [19] Even though some of the participants did not engage in active monitoring, they showed nearly the same rate of success on the task, demonstrating the use of multiple processes for prospective memory performance.
As prospective memory involves remembering and fulfilling an intention, it requires episodic memory, declarative memory, and retrospective memory, followed by supervisory executive functions. [20] All of these are controlled by the frontal lobe which is situated at the front of the cerebral hemisphere. [20] [21]
Studies using positron emission tomography (PET) trace a slight increase in blood flow to the frontal lobe in participants completing prospective memory tasks involving remembering a planned action, while performing other tasks. [22] [23] [24] During these procedures, sites of brain activation include the prefrontal cortex, specifically the right dorsolateral, ventrolateral, and medial regions, as well as the median frontal lobe. The prefrontal cortex is responsible for holding the intention in consciousness and suppressing other internal thoughts. [23] The median frontal lobe keeps attention focused on the planned action instead of the other tasks. [22]
The prefrontal cortex is involved mainly in event-based as opposed to time-based prospective memory. [25] Cheng et al. (2008) [25] had participants with lesions in the prefrontal cortex perform event-based and time-based prospective memory tasks. They found that performance was impaired in the event-based tasks, which use event cues to trigger intentions, but not in the time-based tasks which use time cues to trigger intentions.
Other lesion studies have also shown the use of the frontal lobe in remembering and focusing on intentions. Burgess et al. (2000) studied patients with lesions to areas in the frontal lobe such as Brodmann's area 10, finding that these patients failed to follow instructions and switch attention during prospective memory tasks. [26]
The parietal lobe is typically involved in processing sensory information and is situated in the superior region of the brain. [20]
For prospective memory, the parietal lobe is important for recognizing cues that trigger an intended action, especially when the cues are visual or spatial. [20] [24] The parietal lobe is also responsible for maintaining attention on the intended action and inhibiting other activities during performance. [27] Studies using PET have shown that the parietal lobe is activated when participants engage in prospective memory tasks involving visual information such as remembering a series of numbers. [28] [29] Activation of the parietal lobe is also evident in studies using magnetoencephalography (MEG) which traces electric activity of the brain. [20]
Harrington et al. (1998) found that neural areas ranging from the inferior parietal cortex to the frontal gyri are involved in temporal monitoring during time-based prospective memory tasks. [30] Patients with damage to these areas of the brain had difficulty judging duration and frequency of auditory tones that were presented. Keeping track of information over time is important for prospective memory, remembering intentions to perform in the future.
Much of the limbic system, which contains primitive brain structures relating to emotion and motivation, are involved in memory. [21] [31]
Methods that test prospective memory require the distinction between retrospective memory, which is remembering information, and prospective memory, which is remembering information for the future. Prospective memory requires retrospective memory because one must remember the information itself in order to act in the future. [15] For example, remembering to buy groceries after work (prospective memory) requires the ability to remember what type of groceries are needed (retrospective memory). While prospective memory and retrospective memory are connected, they are distinguishable. This makes it possible to separate these two processes during tests.
Prospective memory tasks can be used in a variety of ways to assess prospective memory. Firstly, results from these tasks can directly assess prospective memory. Furthermore, these tasks can be performed while experimenters use PET, magnetic resonance imaging (MRI), or MEG to monitor brain activation. Finally, these tasks can be followed by questionnaires about prospective memory. Combining different assessments can confirm or deny experimental findings, making sure that conclusions about prospective memory are accurate. All tasks can assess individual stages of prospective memory such as the formation or execution of an intention, or access prospective memory as a whole by looking at overall performance.
Technological assessments were created in order to more appropriately evaluate prospective memory by combining real life intentions with experimental control.
There is an increasing amount of research on the effect of age on prospective memory where typical studies compare groups of people from different ages. A study by Smith et al. (2010) comparing event-based prospective memory in schoolchildren (7–10 years old) and young adults found that adults had better memory performance. [45] Another study by Kvavilashvili et al. (2009) comparing time-based prospective memory among young adults (18- to 30-year-olds), young-old adults (60- to 75-year-olds) and old-old adults (76- to 90-year-olds) showed that young adults had better performance. [46] Event-based prospective memory was further compared between young-old and old-old adults and findings were that young-old adults performed better than old-old adults. [47] These studies suggested that there is continual improvement of prospective memory from childhood into young adulthood but that a decline begins in later adulthood.
A study comparing prospective memory of non-psychotic first-degree relatives of patients with schizophrenia and control participants showed that the relatives performed significantly worse on time-based and event-based prospective memory tasks. [48] [49] Since schizophrenia has a heritable component, this suggested that genetics may play a role in affecting prospective memory.
Many diseases and disorders negatively affect prospective memory, as well as source memory, item recognition, and temporal order memory. [57] The effects range from mild cognitive impairments to more detrimental impairments such as early onset dementia. [58]
The effect of pregnancy on prospective memory is still under current study. Rendell et al. (2008) [67] tested the prospective memory of 20 pregnant women in the laboratory. There were no significant differences observed between pregnant and non-pregnant women for event-based prospective memory tasks, but there were clear hindrances in performance for pregnant women in time-based prospective memory tasks such as a job deadline. Pregnant women are more likely to remember to perform an intention after the cue has already passed. Further, women tested a few months after giving birth were found to forget intentions entirely. Both these findings may be related to stress encountered during pregnancy or child rearing and lack of sleep.
Emotional target cues have been shown to eliminate age differences in prospective memory. For older participants, emotional prospective memory cues were better remembered than neutral cues. Whether the cues are positive or negative, strong emotional attachment makes the cue more self-relevant and easier to remember. Altgassen et al. speculated that the amygdala and hippocampus may play a role in this emotionally enhanced memory effect. [68]
In a study by Kliegel et al. (2008), [69] it was shown that motivational state affected performance in two age groups (three-year-olds and five-year-olds) completing the same prospective memory task. There was no difference for the two age groups when motivation was high but performance of the three years old was reduced when motivation was low. If a person considers a task to be unimportant or is affected by fatigue, they will not be motivated to remember the intention. Less attention will be given to relevant cues and the memory is more likely to be forgotten. Therefore, prospective memory can be enhanced by avoiding low motivational states.
Various studies have reported that 50-80% of all everyday memories are, at least in part, related to prospective memory. [70] Prospective memory is crucial for normal functioning since people form future intentions and remember to carry out past intentions on a daily basis. Numerous aspects of daily life require prospective memory, ranging from ordinary activities such as remembering where to meet a friend, to more important tasks such as remembering what time to take medication.
There is a complicated relationship between prospective memory and time management skills which include making lists, scheduling activities, and avoiding interruptions. Studies have not identified distinct cause and effect relationships between prospective memory and time management, but many consistent correlations have been observed. For example, people who reported better prospective memory according to the Prospective and Retrospective Memory Questionnaire (PRMQ) also indicated a higher likelihood of setting goals and priorities and being more organized. [71] There may be a cyclical effect between prospective memory and time management: better memory may lead to better organization, and better organization may further lead to better memory.
Aviation controllers are often occupied with multiple tasks at the same time, and hazardous effects can occur when prospective memory fails. In the 1991 Los Angeles airport runway collision, a tower controller in an airport forgot a step in a simple procedure and that led to two planes crashing into each other, killing a number of passengers and crew. [72] An analysis of over 1300 fatal aviation accidents from 1950 to 2009 showed that the majority were due to pilot error: 50% attributed to pilot error, 6% due to non-pilot human error, 22% to mechanical failure, 12% to bad weather, 9% to sabotage, and 1% to other causes. [73]
The nursing environment is full of event-based and time-based prospective memory tasks. Simple tasks such as remembering to order a drug or calling patient's family and remembering when to switch shifts are just some examples of a nurse's reliance on prospective memory. It is surprising that not much research has been done concerning the importance of prospective memory in nurses since they face many life-threatening tasks. [74]
Prospective memory is required to remember when to take oral contraceptive pills. A study performed by Matter and Meier (2008) [75] showed that women who self-reported higher prospective memory ability were more satisfied with oral contraceptive use and experienced lower stress levels. Having better memory makes it is easier for these women to remind themselves to take their contraceptives at the required time of the day.
With advancements in technology, Smartphones can serve as prospective memory aids. Electronic calendars are of great use in time-based prospective memory tasks and recently they have been shown to also cue event-based tasks. The iPhone, as well as phones using the Android operating system, can track the user's location using the phone's Global Positioning System (GPS) and send reminders based on the current location. [76] [77] For example, when a parent is near their children's school, the phone can send a reminder for them to pick up their children after school.
Prospective memory has been implicated in the steering cognition model of how children coordinate their attention and response to learning tasks in school. Walker and Walker showed that pupils able to adjust their prospective memory most accurately for different curriculum learning tasks in maths, science and English were more effective learners than pupils whose prospective memory was fixed or inflexible.
Attempts to find wanted or missing individuals through public alert systems sometimes make use of a type of event based prospective memory called prospective person memory. [78] In prospective person memory, a picture of a wanted or missing person is presented to the public with instructions to report any sightings of the individual to authorities. Field experiments show that prospective person memory is often quite poor. [79]
Long-term memory (LTM) is the stage of the Atkinson–Shiffrin memory model in which informative knowledge is held indefinitely. It is defined in contrast to sensory memory, the initial stage, and short-term or working memory, the second stage, which persists for about 18 to 30 seconds. LTM is grouped into two categories known as explicit memory and implicit memory. Explicit memory is broken down into episodic and semantic memory, while implicit memory includes procedural memory and emotional conditioning.
Recall in memory refers to the mental process of retrieval of information from the past. Along with encoding and storage, it is one of the three core processes of memory. There are three main types of recall: free recall, cued recall and serial recall. Psychologists test these forms of recall as a way to study the memory processes of humans and animals. Two main theories of the process of recall are the two-stage theory and the theory of encoding specificity.
In cognitive psychology and neuroscience, spatial memory is a form of memory responsible for the recording and recovery of information needed to plan a course to a location and to recall the location of an object or the occurrence of an event. Spatial memory is necessary for orientation in space. Spatial memory can also be divided into egocentric and allocentric spatial memory. A person's spatial memory is required to navigate in a familiar city. A rat's spatial memory is needed to learn the location of food at the end of a maze. In both humans and animals, spatial memories are summarized as a cognitive map.
Explicit memory is one of the two main types of long-term human memory, the other of which is implicit memory. Explicit memory is the conscious, intentional recollection of factual information, previous experiences, and concepts. This type of memory is dependent upon three processes: acquisition, consolidation, and retrieval.
Age-related memory loss, sometimes described as "normal aging", is qualitatively different from memory loss associated with types of dementia such as Alzheimer's disease, and is believed to have a different brain mechanism.
A source-monitoring error is a type of memory error where the source of a memory is incorrectly attributed to some specific recollected experience. For example, individuals may learn about a current event from a friend, but later report having learned about it on the local news, thus reflecting an incorrect source attribution. This error occurs when normal perceptual and reflective processes are disrupted, either by limited encoding of source information or by disruption to the judgment processes used in source-monitoring. Depression, high stress levels and damage to relevant brain areas are examples of factors that can cause such disruption and hence source-monitoring errors.
Dysexecutive syndrome (DES) consists of a group of symptoms, usually resulting from brain damage, that fall into cognitive, behavioural and emotional categories and tend to occur together. The term was introduced by Alan Baddeley to describe a common pattern of dysfunction in executive functions, such as planning, abstract thinking, flexibility and behavioural control. It is thought to be Baddeley's hypothesized working memory system and the central executive that are the hypothetical systems impaired in DES. The syndrome was once known as frontal lobe syndrome; however 'dysexecutive syndrome' is preferred because it emphasizes the functional pattern of deficits over the location of the syndrome in the frontal lobe, which is often not the only area affected.
Retrospective memory is the memory of people, words, and events encountered or experienced in the past. It includes all other types of memory including episodic, semantic and procedural. It can be either implicit or explicit. In contrast, prospective memory involves remembering something or remembering to do something after a delay, such as buying groceries on the way home from work. However, it is very closely linked to retrospective memory, since certain aspects of retrospective memory are required for prospective memory.
In psychology and neuroscience, executive dysfunction, or executive function deficit, is a disruption to the efficacy of the executive functions, which is a group of cognitive processes that regulate, control, and manage other cognitive processes. Executive dysfunction can refer to both neurocognitive deficits and behavioural symptoms. It is implicated in numerous psychopathologies and mental disorders, as well as short-term and long-term changes in non-clinical executive control. Executive dysfunction is the mechanism underlying ADHD paralysis, and in a broader context, it can encompass other cognitive difficulties like planning, organizing, initiating tasks and regulating emotions. It is a core characteristic of ADHD and can elucidate numerous other recognized symptoms.
Metamemory or Socratic awareness, a type of metacognition, is both the introspective knowledge of one's own memory capabilities and the processes involved in memory self-monitoring. This self-awareness of memory has important implications for how people learn and use memories. When studying, for example, students make judgments of whether they have successfully learned the assigned material and use these decisions, known as "judgments of learning", to allocate study time.
In psychology, context-dependent memory is the improved recall of specific episodes or information when the context present at encoding and retrieval are the same. In a simpler manner, "when events are represented in memory, contextual information is stored along with memory targets; the context can therefore cue memories containing that contextual information". One particularly common example of context-dependence at work occurs when an individual has lost an item in an unknown location. Typically, people try to systematically "retrace their steps" to determine all of the possible places where the item might be located. Based on the role that context plays in determining recall, it is not at all surprising that individuals often quite easily discover the lost item upon returning to the correct context. This concept is heavily related to the encoding specificity principle.
Procedural memory is a type of implicit memory which aids the performance of particular types of tasks without conscious awareness of these previous experiences.
Effects of alcohol on memory include disruption of various memory processes, affecting both formation and recall of information.
Memory improvement is the act of enhancing one's memory. Research on improving memory is driven by amnesia, age-related memory loss, and people’s desire to enhance their memory. Research involved in memory improvement has also worked to determine what factors influence memory and cognition. There are many different techniques to improve memory, some of which include cognitive training, psychopharmacology, diet, stress management, and exercise. Each technique can improve memory in different ways.
The effects of stress on memory include interference with a person's capacity to encode memory and the ability to retrieve information. Stimuli, like stress, improved memory when it was related to learning the subject. During times of stress, the body reacts by secreting stress hormones into the bloodstream. Stress can cause acute and chronic changes in certain brain areas which can cause long-term damage. Over-secretion of stress hormones most frequently impairs long-term delayed recall memory, but can enhance short-term, immediate recall memory. This enhancement is particularly relative in emotional memory. In particular, the hippocampus, prefrontal cortex and the amygdala are affected. One class of stress hormone responsible for negatively affecting long-term, delayed recall memory is the glucocorticoids (GCs), the most notable of which is cortisol. Glucocorticoids facilitate and impair the actions of stress in the brain memory process. Cortisol is a known biomarker for stress. Under normal circumstances, the hippocampus regulates the production of cortisol through negative feedback because it has many receptors that are sensitive to these stress hormones. However, an excess of cortisol can impair the ability of the hippocampus to both encode and recall memories. These stress hormones are also hindering the hippocampus from receiving enough energy by diverting glucose levels to surrounding muscles.
Memory gaps and errors refer to the incorrect recall, or complete loss, of information in the memory system for a certain detail and/or event. Memory errors may include remembering events that never occurred, or remembering them differently from the way they actually happened. These errors or gaps can occur due to a number of different reasons, including the emotional involvement in the situation, expectations and environmental changes. As the retention interval between encoding and retrieval of the memory lengthens, there is an increase in both the amount that is forgotten, and the likelihood of a memory error occurring.
Memory is the faculty of the mind by which data or information is encoded, stored, and retrieved when needed. It is the retention of information over time for the purpose of influencing future action. If past events could not be remembered, it would be impossible for language, relationships, or personal identity to develop. Memory loss is usually described as forgetfulness or amnesia.
Childhood memory refers to memories formed during childhood. Among its other roles, memory functions to guide present behaviour and to predict future outcomes. Memory in childhood is qualitatively and quantitatively different from the memories formed and retrieved in late adolescence and the adult years. Childhood memory research is relatively recent in relation to the study of other types of cognitive processes underpinning behaviour. Understanding the mechanisms by which memories in childhood are encoded and later retrieved has important implications in many areas. Research into childhood memory includes topics such as childhood memory formation and retrieval mechanisms in relation to those in adults, controversies surrounding infantile amnesia and the fact that adults have relatively poor memories of early childhood, the ways in which school environment and family environment influence memory, and the ways in which memory can be improved in childhood to improve overall cognition, performance in school, and well-being, both in childhood and in adulthood.
Reconstructive memory is a theory of memory recall, in which the act of remembering is influenced by various other cognitive processes including perception, imagination, motivation, semantic memory and beliefs, amongst others. People view their memories as being a coherent and truthful account of episodic memory and believe that their perspective is free from an error during recall. However, the reconstructive process of memory recall is subject to distortion by other intervening cognitive functions and operations such as individual perceptions, social influences, and world knowledge, all of which can lead to errors during reconstruction.
Time-based prospective memory is a type of prospective memory in which remembrance is triggered by a time-related cue that indicates that a given action needs to be performed. An example is remembering to watch a television program at 3 p.m. In contrast to time-based prospective memory, event-based prospective memory is triggered by an environmental cue that indicates that an action needs to be performed. An example is remembering to send a letter after seeing a mailbox. While event-based memory is dependent on the environment, time-based prospective memory is self-initiated; one must specifically monitor the passage of time.