Punicic acid

Last updated
Punicic acid
Punicic acid.svg
Names
Preferred IUPAC name
(9Z,11E,13Z)-Octadeca-9,11,13-trienoic acid
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
PubChem CID
UNII
  • InChI=1S/C18H30O2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18(19)20/h5-10H,2-4,11-17H2,1H3,(H,19,20)/b6-5-,8-7+,10-9- X mark.svgN
    Key: CUXYLFPMQMFGPL-BGDVVUGTSA-N X mark.svgN
  • InChI=1/C18H30O2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18(19)20/h5-10H,2-4,11-17H2,1H3,(H,19,20)/b6-5-,8-7+,10-9-
    Key: CUXYLFPMQMFGPL-BGDVVUGTBE
  • CCCC\C=C/C=C/C=C\CCCCCCCC(=O)O
Properties
C18H30O2
Molar mass 278.43 g/mol
Melting point 44 to 45 °C (111 to 113 °F; 317 to 318 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Punicic acid (also called trichosanic acid) is a polyunsaturated fatty acid, 18:3 cis-9, trans-11, cis-13. It is named for the pomegranate, (Punica granatum), and is obtained from pomegranate seed oil. It has also been found in the seed oils of snake gourd. [1]

Punicic acid is a conjugated linolenic acid or CLnA; i.e. it has three conjugated double bonds. It is chemically similar to the conjugated linoleic acids, or CLA, which have two. It has also been classified as an "n-5" or "omega-5" polyunsaturated fatty acid. In lab rats, punicic acid was converted to the CLA rumenic acid (9Z11E-CLA). [2] In vitro, it shows anti-invasive activity against prostate cancer cells. [3] OLETF ratsa strain which becomes obeseremained relatively lean when punicic acid was added to their feed. [4]

Punicic acid makes up around 65% of the fatty acids in pomegranate seed oil. Pomegranate.jpg
Punicic acid makes up around 65% of the fatty acids in pomegranate seed oil.

See also

Related Research Articles

<span class="mw-page-title-main">Fat</span> Esters of fatty acid or triglycerides

In nutrition, biology, and chemistry, fat usually means any ester of fatty acids, or a mixture of such compounds, most commonly those that occur in living beings or in food.

Essential fatty acids, or EFAs, are fatty acids that humans and other animals must ingest because the body requires them for good health, but cannot synthesize them.

α-Linolenic acid Chemical compound

α-Linolenic acid, also known as alpha-Linolenic acid (ALA), is an n−3, or omega-3, essential fatty acid. ALA is found in many seeds and oils, including flaxseed, walnuts, chia, hemp, and many common vegetable oils.

Linoleic acid (LA) is an organic compound with the formula HOOC(CH2)7CH=CHCH2CH=CH(CH2)4CH3. Both alkene groups are cis. It is a fatty acid sometimes denoted 18:2 (n-6) or 18:2 cis-9,12. A linoleate is a salt or ester of this acid.

<span class="mw-page-title-main">Conjugated linoleic acid</span>

Conjugated linoleic acids (CLA) are a family of isomers of linoleic acid. In principle, 28 isomers are possible. CLA is found mostly in the meat and dairy products derived from ruminants. The two C=C double bonds are conjugated. CLAs can be either cis-fats or trans-fats.

<span class="mw-page-title-main">Polyunsaturated fat</span> Type of fatty acid defined by molecular bonds

In biochemistry and nutrition, a polyunsaturated fat is a fat that contains a polyunsaturated fatty acid, which is a subclass of fatty acid characterized by a backbone with two or more carbon–carbon double bonds. Some polyunsaturated fatty acids are essentials. Polyunsaturated fatty acids are precursors to and are derived from polyunsaturated fats, which include drying oils.

Fatty acid desaturases are a family of enzymes that convert saturated fatty acids into unsaturated fatty acids and polyunsaturated fatty acids. For the common fatty acids of the C18 variety, desaturases convert stearic acid into oleic acid. Other desaturases convert oleic acid into linolenic acid, which is the precursor to alpha-linolenic acid, gamma-linolenic acid, and eicosatrienoic acid.

Vaccenic acid is a naturally occurring trans fatty acid and an omega-7 fatty acid. It is the predominant kind of trans-fatty acid found in human milk, in the fat of ruminants, and in dairy products such as milk, butter, and yogurt. Trans fat in human milk may depend on trans fat content in food.

Calendic acid is an unsaturated fatty acid, named for the pot marigold, from which it is obtained. It is chemically similar to the conjugated linoleic acids; laboratory work suggests it may have similar in vitro bioactivities.

<span class="mw-page-title-main">Rumenic acid</span> Chemical compound

Rumenic acid, also known as bovinic acid, is a conjugated linoleic acid (CLA) found in the fat of ruminants and in dairy products. It is an omega-7 trans fatty acid. Its lipid shorthand name is cis-9, trans-11 18:2 acid. The name was proposed by Kramer et al. in 1998. It can be considered as the principal dietary form, accounting for as much as 85-90% of the total CLA content in dairy products.

α-Eleostearic acid Chemical compound

α-Eleostearic acid or (9Z,11E,13E)-octadeca-9,11,13-trienoic acid, is an organic compound, a conjugated fatty acid and one of the isomers of octadecatrienoic acid. It is often called simply eleostearic acid although there is also a β-eleostearic acid. Its high degree of unsaturation gives tung oil its properties as a drying oil.

<span class="mw-page-title-main">Conjugated fatty acid</span>

Conjugated fatty acids is jargon for polyunsaturated fatty acids containing at least one pair of conjugated double bonds. An example of a conjugated fatty acid is the rumenic acid, found in the meat and milk of ruminants. Most unsaturated fatty acids that are doubly unsaturated do not feature conjugation, e.g., linoleic acid and linoelaidic acid.

<span class="mw-page-title-main">Mead acid</span> Chemical compound

Mead acid is an omega-9 fatty acid, first characterized by James F. Mead. As with some other omega-9 polyunsaturated fatty acids, animals can make Mead acid de novo. Its elevated presence in the blood is an indication of essential fatty acid deficiency. Mead acid is found in large quantities in cartilage.

<span class="mw-page-title-main">Linoleoyl-CoA desaturase</span> Class of enzymes

Linoleoyl-CoA desaturase (also Delta 6 desaturase, EC 1.14.19.3) is an enzyme that converts between types of fatty acids, which are essential nutrients in the human body. The enzyme mainly catalyzes the chemical reaction

α-Parinaric acid Chemical compound

α-Parinaric acid is a conjugated polyunsaturated fatty acid. Discovered by Tsujimoto and Koyanagi in 1933, it contains 18 carbon atoms and 4 conjugated double bonds. The repeating single bond-double bond structure of α-parinaric acid distinguishes it structurally and chemically from the usual "methylene-interrupted" arrangement of polyunsaturated fatty acids that have double-bonds and single bonds separated by a methylene unit (−CH2−). Because of the fluorescent properties conferred by the alternating double bonds, α-parinaric acid is commonly used as a molecular probe in the study of biomembranes.

<span class="mw-page-title-main">Octadecatrienoic acid</span> Index of chemical compounds with the same name

An octadecatrienoic acid is a chemical compound with formula C
18
H
30
O
2
, a polyunsaturated fatty acid whose molecule has an 18-carbon unbranched backbone with three double bonds.

Only two essential fatty acids are known to be essential for humans: alpha-linolenic acid and linoleic acid. The biological effects of the ω-3 and ω-6 fatty acids are mediated by their mutual interactions. Closely related, these fatty acids act as competing substrates for the same enzymes. The biological effects of the ω-3 and ω-6 fatty acids are largely mediated by essential fatty acid interactions. The proportion of omega-3 to omega-6 fatty acids in a diet may have metabolic consequences. Unlike omega-3 fatty acids and omega-6 fatty acids, omega-9 fatty acids are not classed as essential fatty acids because they can be created by the human body from monounsaturated and saturated fatty acids, and are therefore not essential in the diet.

<span class="mw-page-title-main">13-Hydroxyoctadecadienoic acid</span> Chemical compound

13-Hydroxyoctadecadienoic acid (13-HODE) is the commonly used term for 13(S)-hydroxy-9Z,11E-octadecadienoic acid (13(S)-HODE). The production of 13(S)-HODE is often accompanied by the production of its stereoisomer, 13(R)-hydroxy-9Z,11E-octadecadienoic acid (13(R)-HODE). The adjacent figure gives the structure for the (S) stereoisomer of 13-HODE. Two other naturally occurring 13-HODEs that may accompany the production of 13(S)-HODE are its cis-trans (i.e., 9E,11E) isomers viz., 13(S)-hydroxy-9E,11E-octadecadienoic acid (13(S)-EE-HODE) and 13(R)-hydroxy-9E,11E-octadecadienoic acid (13(R)-EE-HODE). Studies credit 13(S)-HODE with a range of clinically relevant bioactivities; recent studies have assigned activities to 13(R)-HODE that differ from those of 13(S)-HODE; and other studies have proposed that one or more of these HODEs mediate physiological and pathological responses, are markers of various human diseases, and/or contribute to the progression of certain diseases in humans. Since, however, many studies on the identification, quantification, and actions of 13(S)-HODE in cells and tissues have employed methods that did not distinguish between these isomers, 13-HODE is used here when the actual isomer studied is unclear.

<span class="mw-page-title-main">Coronaric acid</span> Chemical compound

Coronaric acid (leukotoxin or leukotoxin A) is a mono-unsaturated, epoxide derivative of the di-saturated fatty acid, linoleic acid (i.e. 9(Z),12(Z) octadecadienoic acid). It is a mixture of the two optically active isomers of 12(Z) 9,10-epoxy-octadecenoic acid. This mixture is also termed 9,10-epoxy-12Z-octadecenoic acid or 9(10)-EpOME and when formed by or studied in mammalians, leukotoxin.

<span class="mw-page-title-main">Reinforced lipids</span> Deuterated lipid molecules

Reinforced lipids are lipid molecules in which some of the fatty acids contain deuterium instead of hydrogen. They can be used for the protection of living cells by slowing the chain reaction due to isotope effect on lipid peroxidation. The lipid bilayer of the cell and organelle membranes contain polyunsaturated fatty acids (PUFA) are key components of cell and organelle membranes. Any process that either increases oxidation of PUFAs or hinders their ability to be replaced can lead to serious disease. Correspondingly, use of reinforced lipids that stop the chain reaction of lipid peroxidation has preventive and therapeutic potential.

References

  1. Cyberlipid. "POLYENOIC FATTY ACIDS". Archived from the original on 2018-09-30. Retrieved 2007-01-11.
  2. Tsuzuki T, Kawakami Y, Abe R (1 August 2006). "Conjugated linolenic acid is slowly absorbed in rat intestine, but quickly converted to conjugated linoleic acid". J Nutr. 136 (8): 2153–9. doi: 10.1093/jn/136.8.2153 . PMID   16857834 . Retrieved 2007-01-23.
  3. Lansky E, Harrison G, Froom P, Jiang W (2005). "Pomegranate (Punica granatum) pure chemicals show possible synergistic inhibition of human PC-3 prostate cancer cell invasion across Matrigel". Invest New Drugs. 23 (2): 121–2. doi:10.1007/s10637-005-5856-7. PMID   15744587. S2CID   5867887.
  4. Arao K, Wang Y, Inoue N, Hirata J, Cha J, Nagao K, Yanagita T (2004). "Dietary effect of pomegranate seed oil rich in 9cis, 11trans, 13cis conjugated linolenic acid on lipid metabolism in obese, hyperlipidemic OLETF rats". Lipids Health Dis. 3: 24. doi: 10.1186/1476-511X-3-24 . PMC   534798 . PMID   15533261.