Pelargonic acid

Last updated
Pelargonic acid
Pelargonic acid.svg
Names
Preferred IUPAC name
Nonanoic acid
Other names
Nonoic acid; nonylic acid; 1-octanecarboxylic acid; C9:0 (lipid numbers)
Identifiers
3D model (JSmol)
1752351
ChEBI
ChemSpider
ECHA InfoCard 100.003.574 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 203-931-2
185341
KEGG
PubChem CID
UNII
  • InChI=1S/C9H18O2/c1-2-3-4-5-6-7-8-9(10)11/h2-8H2,1H3,(H,10,11) Yes check.svgY
    Key: FBUKVWPVBMHYJY-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C9H18O2/c1-2-3-4-5-6-7-8-9(10)11/h2-8H2,1H3,(H,10,11)
    Key: FBUKVWPVBMHYJY-UHFFFAOYAF
  • CCCCCCCCC(=O)O
Properties
C9H18O2
Molar mass 158.241 g/mol
AppearanceClear to yellowish oily liquid
Density 0.900 g/cm3
Melting point 12.5 °C (54.5 °F; 285.6 K)
Boiling point 254 °C (489 °F; 527 K)
Critical point (T, P)439 °C (712 K), 2.35 MPa
0.3 g/L
Acidity (pKa)
  • 4.96 [1]
  • 1.055 at 2.06–2.63 K (−271.09 – −270.52 °C; −455.96 – −454.94 °F)
  • 1.53 at −191 °C (−311.8 °F; 82.1 K)
1.4322
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Corrosive
GHS labelling:
GHS-pictogram-acid.svg GHS-pictogram-exclam.svg
Warning
H315, H319, H412
P264, P273, P280, P302+P352, P305+P351+P338, P321, P332+P313, P337+P313, P362, P501
NFPA 704 (fire diamond)
NFPA 704.svgHealth 3: Short exposure could cause serious temporary or residual injury. E.g. chlorine gasFlammability 1: Must be pre-heated before ignition can occur. Flash point over 93 °C (200 °F). E.g. canola oilInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
3
1
0
Flash point 114 °C (237 °F; 387 K)
405 °C (761 °F; 678 K)
Related compounds
Related compounds
Octanoic acid, decanoic acid
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Pelargonic acid, also called nonanoic acid, is an organic compound with structural formula CH3(CH2)7CO2H. It is a nine-carbon fatty acid. Nonanoic acid is a colorless oily liquid with an unpleasant, rancid odor. It is nearly insoluble in water, but very soluble in organic solvents. The esters and salts of pelargonic acid are called pelargonates or nonanoates.

Contents

The acid is named after the pelargonium plant, since oil from its leaves contains esters of the acid.

Preparation

Together with azelaic acid, it is produced industrially by ozonolysis of oleic acid. [2]

Alternatively, pelargonic acid can be produced in a two-step process beginning with coupled dimerization and hydroesterification of 1,3-butadiene. This step produces a doubly unsaturated C9-ester, which can be hydrogenated to give esters of pelargonic acid. [3]

A laboratory preparation involves permanganate oxidation of 1-decene. [4]

Occurrence and uses

Pelargonic acid occurs naturally as esters in the oil of pelargonium.

Synthetic esters of pelargonic acid, such as methyl pelargonate, are used as flavorings. Pelargonic acid is also used in the preparation of plasticizers and lacquers. The derivative 4-nonanoylmorpholine is an ingredient in some pepper sprays.

The ammonium salt of pelargonic acid, ammonium pelargonate, is a herbicide. It is commonly used in conjunction with glyphosate, a non-selective herbicide, for a quick burn-down effect in the control of weeds in turfgrass. It works by causing leaks in plant cell membranes, allowing chlorophyll molecules to escape the chloroplast. Under sunlight, these misplaced molecules cause immense oxidative damage to the plant. [5]

The methyl form and ethylene glycol pelargonate act as nematicides against Meloidogyne javanica on Solanum lycopersicum , and the methyl against Heterodera glycines and M. incognita on Glycine max . [6]

Esters of pelargonic acid are precursors to lubricants.

Pharmacological effects

Pelargonic acid may be more potent than valproic acid in treating seizures. [7] Moreover, in contrast to valproic acid, pelargonic acid exhibited no effect on HDAC inhibition, suggesting that it is unlikely to show HDAC inhibition-related teratogenicity. [7]

See also

Related Research Articles

<span class="mw-page-title-main">Alcohol (chemistry)</span> Organic compound with at least one hydroxyl (–OH) group

In chemistry, an alcohol is a type of organic compound that carries at least one hydroxyl functional group bound to a saturated carbon atom. Alcohols range from the simple, like methanol and ethanol, to complex, like sugar alcohols and cholesterol. The presence of an OH group strongly modifies the properties of hydrocarbons, conferring hydrophilic (water-loving) properties. The OH group provides a site at which many reactions can occur.

<span class="mw-page-title-main">Carboxylic acid</span> Organic compound containing a –C(=O)OH group

In organic chemistry, a carboxylic acid is an organic acid that contains a carboxyl group attached to an R-group. The general formula of a carboxylic acid is often written as R−COOH or R−CO2H, sometimes as R−C(O)OH with R referring to the alkyl, alkenyl, aryl, or other group. Carboxylic acids occur widely. Important examples include the amino acids and fatty acids. Deprotonation of a carboxylic acid gives a carboxylate anion.

<span class="mw-page-title-main">Ester</span> Compound derived from an acid

In chemistry, an ester is a compound derived from an acid in which the hydrogen atom (H) of at least one acidic hydroxyl group of that acid is replaced by an organyl group. Analogues derived from oxygen replaced by other chalcogens belong to the ester category as well. According to some authors, organyl derivatives of acidic hydrogen of other acids are esters as well, but not according to the IUPAC.

<span class="mw-page-title-main">Ketone</span> Organic compounds of the form >C=O

In organic chemistry, a ketone is an organic compound with the structure R−C(=O)−R', where R and R' can be a variety of carbon-containing substituents. Ketones contain a carbonyl group −C(=O)−. The simplest ketone is acetone, with the formula (CH3)2CO. Many ketones are of great importance in biology and in industry. Examples include many sugars (ketoses), many steroids, and the solvent acetone.

Erucic acid is a monounsaturated omega-9 fatty acid, denoted 22:1ω9. It has the chemical formula: CH3(CH2)7CH=CH(CH2)11CO2H. It is prevalent in wallflower seed and other plants in the family Brassicaceae, with a reported content of 20 to 54% in high erucic acid rapeseed oil and 42% in mustard oil. Erucic acid is also known as cis-13-docosenoic acid and the trans isomer is known as brassidic acid.

<span class="mw-page-title-main">Dicarbonyl</span> Molecule containing two adjacent C=O groups

In organic chemistry, a dicarbonyl is a molecule containing two carbonyl groups. Although this term could refer to any organic compound containing two carbonyl groups, it is used more specifically to describe molecules in which both carbonyls are in close enough proximity that their reactivity is changed, such as 1,2-, 1,3-, and 1,4-dicarbonyls. Their properties often differ from those of monocarbonyls, and so they are usually considered functional groups of their own. These compounds can have symmetrical or unsymmetrical substituents on each carbonyl, and may also be functionally symmetrical or unsymmetrical.

<span class="mw-page-title-main">Oleic acid</span> Monounsaturated omega-9 fatty acid

Oleic acid is a fatty acid that occurs naturally in various animal and vegetable fats and oils. It is an odorless, colorless oil, although commercial samples may be yellowish. In chemical terms, oleic acid is classified as a monounsaturated omega-9 fatty acid, abbreviated with a lipid number of 18:1 cis-9, and a main product of Δ9-desaturase. It has the formula CH3−(CH2)7−CH=CH−(CH2)7−COOH. The name derives from the Latin word oleum, which means oil. It is the most common fatty acid in nature. The salts and esters of oleic acid are called oleates. It is a common component of oils, and thus occurs in many types of food, as well as in soap.

<span class="mw-page-title-main">Isobutyric acid</span> Carboxylic acid with chemical formula (CH3)2CHCO2H

Isobutyric acid, also known as 2-methylpropanoic acid or isobutanoic acid, is a carboxylic acid with structural formula (CH3)2CHCOOH. It is an isomer of butyric acid. It is classified as a short-chain fatty acid. Deprotonation or esterification gives derivatives called isobutyrates.

<span class="mw-page-title-main">Ethyl oleate</span> Chemical compound

Ethyl oleate is a fatty acid ester formed by the condensation of oleic acid and ethanol. It is a colorless oil although degraded samples can appear yellow.

In organic chemistry, ozonolysis is an organic reaction where the unsaturated bonds are cleaved with ozone. Multiple carbon–carbon bond are replaced by carbonyl groups, such as aldehydes, ketones, and carboxylic acids. The reaction is predominantly applied to alkenes, but alkynes and azo compounds are also susceptible to cleavage. The outcome of the reaction depends on the type of multiple bond being oxidized and the work-up conditions.

<span class="mw-page-title-main">Methyl methacrylate</span> Chemical compound

Methyl methacrylate (MMA) is an organic compound with the formula CH2=C(CH3)COOCH3. This colorless liquid, the methyl ester of methacrylic acid (MAA), is a monomer produced on a large scale for the production of poly(methyl methacrylate) (PMMA).

Enanthic acid, also called heptanoic acid, is an organic compound composed of a seven-carbon chain terminating in a carboxylic acid functional group. It is a colorless oily liquid with an unpleasant, rancid odor. It contributes to the odor of some rancid oils. It is slightly soluble in water, but very soluble in ethanol and ether. Salts and esters of enanthic acid are called enanthates or heptanoates.

In chemistry, carbonylation refers to reactions that introduce carbon monoxide (CO) into organic and inorganic substrates. Carbon monoxide is abundantly available and conveniently reactive, so it is widely used as a reactant in industrial chemistry. The term carbonylation also refers to oxidation of protein side chains.

Decene is an organic compound with the chemical formula C10H20. Decene contains a chain of ten carbon atoms with one double bond, making it an alkene. There are many isomers of decene depending on the position and geometry of the double bond. Dec-1-ene is the only isomer of industrial importance. As an alpha olefin, it is used as a comonomer in copolymers and is an intermediate in the production of epoxides, amines, oxo alcohols, synthetic lubricants, synthetic fatty acids and alkylated aromatics.

Telomerization is a reaction that produces a particular kind of oligomer with two distinct end groups. The oligomer is called a telomer. Some telomerizations proceed by radical pathways, many do not. A generic equation is:

Pentadecylic acid, also known as pentadecanoic acid or C15:0, is an odd-chain saturated fatty acid. Its molecular formula is CH3(CH2)13CO2H. It is a colorless solid.

Tridecylic acid, or tridecanoic acid, is the organic compound with the formula CH3(CH2)11CO2H. It is a 13-carbon saturated fatty acid. It is a white solid.

In organic chemistry, ethenolysis is a chemical process in which internal olefins are degraded using ethylene as the reagent. The reaction is an example of cross metathesis. The utility of the reaction is driven by the low cost of ethylene as a reagent and its selectivity. It produces compounds with terminal alkene functional groups (α-olefins), which are more amenable to other reactions such as polymerization and hydroformylation.

Heneicosylic acid, or heneicosanoic acid, is the organic compound with the formula CH3(CH2)19CO2H. It is the straight-chain 21-carbon saturated fatty acid. It is a colorless solid.

In industrial chemistry, carboalkoxylation is a process for converting alkenes to esters. This reaction is a form of carbonylation. A closely related reaction is hydrocarboxylation, which employs water in place of alcohols

References

  1. Lide, D. R. (Ed.) (1990). CRC Handbook of Chemistry and Physics (70th Edn.). Boca Raton (FL):CRC Press.
  2. David J. Anneken, Sabine Both, Ralf Christoph, Georg Fieg, Udo Steinberner, Alfred Westfechtel "Fatty Acids" in Ullmann's Encyclopedia of Industrial Chemistry, 2006, Wiley-VCH, Weinheim. doi : 10.1002/14356007.a10_245.pub2
  3. J. Grub; E. Löser (2012). "Butadiene". Ullmann's Encyclopedia of Industrial Chemistry . Weinheim: Wiley-VCH. doi:10.1002/14356007.a04_431.pub2. ISBN   978-3527306732.
  4. Lee, Donald G.; Lamb, Shannon E.; Chang, Victor S. (1981). "Carboxylic Acids from the Oxidation of Terminal Alkenes by Permanganate: Nonadecanoic Acid". Organic Syntheses. 60: 11. doi: 10.15227/orgsyn.060.0011 .
  5. Lederer, Barbara; Fujimori, Takane; Tsujino, Yasuko; Wakabayashi, Ko; Böger, Peter (November 2004). "Phytotoxic activity of middle-chain fatty acids II: peroxidation and membrane effects". Pesticide Biochemistry and Physiology. 80 (3): 151–156. doi:10.1016/j.pestbp.2004.06.010.
  6. Chitwood, David J. (2002). "Phytochemical Based Strategies for Nematode Control". Annual Review of Phytopathology . 40 (1). Annual Reviews: 221–249. doi:10.1146/annurev.phyto.40.032602.130045. ISSN   0066-4286. PMID   12147760. p. 229.
  7. 1 2 Chang, P.; Terbach, N.; Plant, N.; Chen, P. E.; Walker, M. C.; Williams, R. S. (2013). "Seizure control by ketogenic diet-associated medium chain fatty acids". Neuropharmacology. 69: 105–114. doi:10.1016/j.neuropharm.2012.11.004. PMC   3625124 . PMID   23177536.