Pelargonic acid

Last updated
Pelargonic acid
Pelargonic acid.svg
Names
Preferred IUPAC name
Nonanoic acid
Other names
Nonoic acid; nonylic acid; 1-octanecarboxylic acid; C9:0 (lipid numbers)
Identifiers
3D model (JSmol)
1752351
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.003.574 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 203-931-2
185341
KEGG
PubChem CID
UNII
  • InChI=1S/C9H18O2/c1-2-3-4-5-6-7-8-9(10)11/h2-8H2,1H3,(H,10,11) Yes check.svgY
    Key: FBUKVWPVBMHYJY-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C9H18O2/c1-2-3-4-5-6-7-8-9(10)11/h2-8H2,1H3,(H,10,11)
    Key: FBUKVWPVBMHYJY-UHFFFAOYAF
  • CCCCCCCCC(=O)O
Properties
C9H18O2
Molar mass 158.241 g/mol
AppearanceClear to yellowish oily liquid
Density 0.900 g/cm3
Melting point 12.5 °C (54.5 °F; 285.6 K)
Boiling point 254 °C (489 °F; 527 K)
Critical point (T, P)439 °C (712 K), 2.35 MPa
0.3 g/L
Acidity (pKa)
  • 4.96 [1]
  • 1.055 at 2.06–2.63 K (−271.09 – −270.52 °C; −455.96 – −454.94 °F)
  • 1.53 at −191 °C (−311.8 °F; 82.1 K)
1.4322
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Corrosive
GHS labelling:
GHS-pictogram-acid.svg GHS-pictogram-exclam.svg
Warning
H315, H319, H412
P264, P273, P280, P302+P352, P305+P351+P338, P321, P332+P313, P337+P313, P362, P501
NFPA 704 (fire diamond)
NFPA 704.svgHealth 3: Short exposure could cause serious temporary or residual injury. E.g. chlorine gasFlammability 1: Must be pre-heated before ignition can occur. Flash point over 93 °C (200 °F). E.g. canola oilInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
3
1
0
Flash point 114 °C (237 °F; 387 K)
405 °C (761 °F; 678 K)
Related compounds
Related compounds
Octanoic acid, decanoic acid
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Pelargonic acid, also called nonanoic acid, is an organic compound with structural formula CH3(CH2)7CO2H. It is a nine-carbon fatty acid. Nonanoic acid is a colorless oily liquid with an unpleasant, rancid odor. It is nearly insoluble in water, but very soluble in organic solvents. The esters and salts of pelargonic acid are called pelargonates or nonanoates.

Contents

The acid is named after the pelargonium plant, since oil from its leaves contains esters of the acid.

Preparation

Together with azelaic acid, it is produced industrially by ozonolysis of oleic acid. [2]

CH3(CH2)7CH=CH(CH2)7CO2H + O3 → CH3(CH2)7CO2H + HO2C(CH2)7CO2H

Alternatively, pelargonic acid can be produced in a two-step process beginning with coupled dimerization and hydroesterification of 1,3-butadiene. This step produces a doubly unsaturated C9-ester, which can be hydrogenated to give esters of pelargonic acid. [3]

2 CH2=CHCH=CH2 + CO + CH3OH → CH2=CH(CH2)3CH=CHCH2CO2CH3
CH2=CH(CH2)3CH=CHCH2CO2CH3 + 2 H2 → CH3(CH2)7CO2CH3

A laboratory preparation involves permanganate oxidation of 1-decene. [4]

Occurrence and uses

Pelargonic acid occurs naturally as esters in the oil of Pelargonium .

Synthetic esters of pelargonic acid, such as methyl pelargonate, are used as flavorings. Pelargonic acid is also used in the preparation of plasticizers and lacquers. The derivative 4-nonanoylmorpholine is an ingredient in some pepper sprays.

The ammonium salt of pelargonic acid, ammonium pelargonate, is a herbicide. It is commonly used in conjunction with glyphosate, a non-selective herbicide, for a quick burn-down effect in the control of weeds in turfgrass. It works by causing leaks in plant cell membranes, allowing chlorophyll molecules to escape the chloroplast. Under sunlight, these misplaced molecules cause immense oxidative damage to the plant. [5]

The methyl form and ethylene glycol pelargonate act as nematicides against Meloidogyne javanica on Solanum lycopersicum , and the methyl against Heterodera glycines and M. incognita on Glycine max . [6]

Esters of pelargonic acid are precursors to lubricants.

Pharmacological effects

Pelargonic acid may be more potent than valproic acid in treating seizures. [7] Moreover, in contrast to valproic acid, pelargonic acid exhibited no effect on HDAC inhibition, suggesting that it is unlikely to show HDAC inhibition-related teratogenicity. [7]

See also

Related Research Articles

<span class="mw-page-title-main">Carboxylic acid</span> Organic compound containing a –C(=O)OH group

In organic chemistry, a carboxylic acid is an organic acid that contains a carboxyl group attached to an R-group. The general formula of a carboxylic acid is often written as R−COOH or R−CO2H, sometimes as R−C(O)OH with R referring to an organyl group, or hydrogen, or other groups. Carboxylic acids occur widely. Important examples include the amino acids and fatty acids. Deprotonation of a carboxylic acid gives a carboxylate anion.

<span class="mw-page-title-main">Ester</span> Compound derived from an acid

In chemistry, an ester is a compound derived from an acid in which the hydrogen atom (H) of at least one acidic hydroxyl group of that acid is replaced by an organyl group. These compounds contain a distinctive functional group. Analogues derived from oxygen replaced by other chalcogens belong to the ester category as well. According to some authors, organyl derivatives of acidic hydrogen of other acids are esters as well, but not according to the IUPAC.

<span class="mw-page-title-main">Ketone</span> Organic compounds of the form >C=O

In organic chemistry, a ketone is an organic compound with the structure R−C(=O)−R', where R and R' can be a variety of carbon-containing substituents. Ketones contain a carbonyl group −C(=O)−. The simplest ketone is acetone, with the formula (CH3)2CO. Many ketones are of great importance in biology and industry. Examples include many sugars (ketoses), many steroids, and the solvent acetone.

<span class="mw-page-title-main">Acrylic acid</span> Chemical compound

Acrylic acid (IUPAC: prop-2-enoic acid) is an organic compound with the formula CH2=CHCOOH. It is the simplest unsaturated carboxylic acid, consisting of a vinyl group connected directly to a carboxylic acid terminus. This colorless liquid has a characteristic acrid or tart smell. It is miscible with water, alcohols, ethers, and chloroform. More than a million tons are produced annually.

<span class="mw-page-title-main">Isobutyric acid</span> Carboxylic acid with chemical formula (CH3)2CHCO2H

Isobutyric acid, also known as 2-methylpropanoic acid or isobutanoic acid, is a carboxylic acid with structural formula (CH3)2CHCOOH. It is an isomer of butyric acid. It is classified as a short-chain fatty acid. Deprotonation or esterification gives derivatives called isobutyrates.

<span class="mw-page-title-main">Quaternary ammonium cation</span> Polyatomic ions of the form N(–R)₄ (charge +1)

In organic chemistry, quaternary ammonium cations, also known as quats, are positively-charged polyatomic ions of the structure [NR4]+, where R is an alkyl group, an aryl group or organyl group. Unlike the ammonium ion and the primary, secondary, or tertiary ammonium cations, the quaternary ammonium cations are permanently charged, independent of the pH of their solution. Quaternary ammonium salts or quaternary ammonium compounds are salts of quaternary ammonium cations. Polyquats are a variety of engineered polymer forms which provide multiple quat molecules within a larger molecule.

<span class="mw-page-title-main">Valeric acid</span> Carboxylic acid – CH3(CH2)3COOH

Valeric acid or pentanoic acid is a straight-chain alkyl carboxylic acid with the chemical formula CH3(CH2)3COOH. Like other low-molecular-weight carboxylic acids, it has an unpleasant odor. It is found in the perennial flowering plant Valeriana officinalis, from which it gets its name. Its primary use is in the synthesis of its esters. Salts and esters of valeric acid are known as valerates or pentanoates. Volatile esters of valeric acid tend to have pleasant odors and are used in perfumes and cosmetics. Several, including ethyl valerate and pentyl valerate are used as food additives because of their fruity flavors.

<span class="mw-page-title-main">Oleyl alcohol</span> Chemical compound

Oleyl alcohol, or cis-9-octadecen-1-ol, is an unsaturated fatty alcohol with the molecular formula C18H36O or the condensed structural formula CH3(CH2)7−CH=CH−(CH2)8OH. It is a colorless oil, mainly used in cosmetics.

In organic chemistry, ozonolysis is an organic reaction where the unsaturated bonds are cleaved with ozone. Multiple carbon–carbon bond are replaced by carbonyl groups, such as aldehydes, ketones, and carboxylic acids. The reaction is predominantly applied to alkenes, but alkynes and azo compounds are also susceptible to cleavage. The outcome of the reaction depends on the type of multiple bond being oxidized and the work-up conditions.

<span class="mw-page-title-main">Methyl methacrylate</span> Organic monomer

Methyl methacrylate (MMA) is an organic compound with the formula CH2=C(CH3)COOCH3. This colorless liquid, the methyl ester of methacrylic acid (MAA), is a monomer produced on a large scale for the production of poly(methyl methacrylate) (PMMA).

Dodecanol, or lauryl alcohol, is an organic compound produced industrially from palm kernel oil or coconut oil. It is a fatty alcohol. Sulfate esters of lauryl alcohol, especially sodium lauryl sulfate, are very widely used as surfactants. Sodium lauryl sulfate and the related dodecanol derivatives ammonium lauryl sulfate and sodium laureth sulfate are all used in shampoos. Dodecanol is tasteless, colorless, and has a floral odor.

Enanthic acid, also called heptanoic acid, is an organic compound composed of a seven-carbon chain terminating in a carboxylic acid functional group. It is a colorless oily liquid with an unpleasant, rancid odor. It contributes to the odor of some rancid oils. It is slightly soluble in water, but very soluble in ethanol and ether. Salts and esters of enanthic acid are called enanthates or heptanoates.

Pivalic acid is a carboxylic acid with a molecular formula of (CH3)3CCO2H. This colourless, odiferous organic compound is solid at room temperature. Two abbreviations for pivalic acid are t-BuC(O)OH and PivOH. The pivalyl or pivaloyl group is abbreviated t-BuC(O).

<span class="mw-page-title-main">Organosulfate</span> Organic compounds of the form R–O–SO₃ (charge –1)

In organosulfur chemistry, organosulfates are a class of organic compounds sharing a common functional group with the structure R−O−SO−3. The SO4 core is a sulfate group and the R group is any organic residue. All organosulfates are formally esters derived from alcohols and sulfuric acid although many are not prepared in this way. Many sulfate esters are used in detergents, and some are useful reagents. Alkyl sulfates consist of a hydrophobic hydrocarbon chain, a polar sulfate group and either a cation or amine to neutralize the sulfate group. Examples include: sodium lauryl sulfate and related potassium and ammonium salts.

Undecylenic acid is an organic compound with the formula CH2=CH(CH2)8CO2H. It is an unsaturated fatty acid. It is a colorless oil. Undecylenic acid is mainly used for the production of Nylon-11 and in the treatment of fungal infections of the skin, but it is also a precursor in the manufacture of many pharmaceuticals, personal hygiene products, cosmetics, and perfumes. Salts and esters of undecylenic acid are known as undecylenates.

In chemistry, carbonylation refers to reactions that introduce carbon monoxide (CO) into organic and inorganic substrates. Carbon monoxide is abundantly available and conveniently reactive, so it is widely used as a reactant in industrial chemistry. The term carbonylation also refers to oxidation of protein side chains.

Telomerization is a reaction that produces a particular kind of oligomer with two distinct end groups. The oligomer is called a telomer. Some telomerizations proceed by radical pathways, many do not. A generic equation is:

Pentadecylic acid, also known as pentadecanoic acid or C15:0, is an odd-chain saturated fatty acid. Its molecular formula is CH3(CH2)13CO2H. It is a colorless solid.

Tridecylic acid, or tridecanoic acid, is the organic compound with the formula CH3(CH2)11CO2H. It is a 13-carbon saturated fatty acid. It is a white solid.

In industrial chemistry, carboalkoxylation is a process for converting alkenes to esters. This reaction is a form of carbonylation. A closely related reaction is hydrocarboxylation, which employs water in place of alcohols.

References

  1. Lide, D. R. (Ed.) (1990). CRC Handbook of Chemistry and Physics (70th Edn.). Boca Raton (FL):CRC Press.
  2. Anneken, David J.; Both, Sabine; Christoph, Ralf; Fieg, Georg; Steinberner, Udo; Westfechtel, Alfred (2006). "Fatty Acids". Ullmann's Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.a10_245.pub2. ISBN   978-3-527-30385-4.
  3. J. Grub; E. Löser (2012). "Butadiene". Ullmann's Encyclopedia of Industrial Chemistry . Weinheim: Wiley-VCH. doi:10.1002/14356007.a04_431.pub2. ISBN   978-3527306732.
  4. Lee, Donald G.; Lamb, Shannon E.; Chang, Victor S. (1981). "Carboxylic Acids from the Oxidation of Terminal Alkenes by Permanganate: Nonadecanoic Acid". Organic Syntheses. 60: 11. doi: 10.15227/orgsyn.060.0011 .
  5. Lederer, Barbara; Fujimori, Takane; Tsujino, Yasuko; Wakabayashi, Ko; Böger, Peter (November 2004). "Phytotoxic activity of middle-chain fatty acids II: peroxidation and membrane effects". Pesticide Biochemistry and Physiology. 80 (3): 151–156. Bibcode:2004PBioP..80..151L. doi:10.1016/j.pestbp.2004.06.010.
  6. Chitwood, David J. (2002). "Phytochemical Based Strategies for Nematode Control". Annual Review of Phytopathology . 40 (1). Annual Reviews: 221–249. doi:10.1146/annurev.phyto.40.032602.130045. ISSN   0066-4286. PMID   12147760. p. 229.
  7. 1 2 Chang, P.; Terbach, N.; Plant, N.; Chen, P. E.; Walker, M. C.; Williams, R. S. (2013). "Seizure control by ketogenic diet-associated medium chain fatty acids". Neuropharmacology. 69: 105–114. doi:10.1016/j.neuropharm.2012.11.004. PMC   3625124 . PMID   23177536.