Coordinates | 89°40′S129°47′E / 89.67°S 129.78°E [1] |
---|---|
Diameter | 21.0 km [2] |
Depth | 4.2 km [2] |
Colongitude | 0° at sunrise |
Eponym | Ernest Shackleton |
Shackleton is an impact crater that lies at the lunar south pole. The peaks along the crater's rim are exposed to almost continual sunlight, while the interior is perpetually in shadow. The low-temperature interior of this crater functions as a cold trap that may capture and freeze volatiles shed during comet impacts on the Moon. Measurements by the Lunar Prospector spacecraft showed higher than normal amounts of hydrogen within the crater, which may indicate the presence of water ice. The crater is named after Antarctic explorer Ernest Shackleton.
The rotational axis of the Moon passes through Shackleton, near the rim. The crater is 21 km (13 miles) in diameter and 4.2 km (2.6 miles) deep. [2] From the Earth, it is viewed edge-on in a region of rough, cratered terrain. It is located within the South Pole–Aitken basin on a massif. [3] The rim is slightly raised about the surrounding surface and it has an outer rampart that has been only lightly impacted. No significant craters intersect the rim, and it is sloped about 1.5° toward the direction 50–90° from the Earth. [2] [4] The age of the crater is about 3.6 billion years and it has been in the proximity of the south lunar pole for at least the last two billion years. [3]
Because the orbit of the Moon is tilted only 1.5° from the ecliptic, [5] the interior of this crater lies in perpetual darkness. Estimates of the area in permanent shadow were obtained from Earth-based radar studies. [6] Peaks along the rim of the crater are almost continually illuminated by sunlight, spending about 80–90% of each lunar orbit exposed to the Sun. [7] Continuously illuminated mountains have been termed peaks of eternal light and have been predicted to exist since the early nineteenth century.
The shadowed portion of the crater was imaged with the Terrain Camera of the Japanese SELENE spacecraft using the illumination of sunlight reflected off the rim. The interior of the crater consists of a symmetrical 30° slope that leads down to a 6.6 km (4.1 miles) diameter floor. The handful of craters along the interior span no more than a few hundred meters. The bottom is covered by an uneven mound-like feature that is 300 to 400 m (980–1,310 ft) thick. The central peak is about 200 m (660 ft) in height. [2] [8]
The continuous shadows in the south polar craters cause the floors of these formations to maintain a temperature that never exceeds about 100 K (−173 °C; −280 °F). For Shackleton, the average temperature was determined to be about 90 K (−183 °C; −298 °F), reaching 88 K at the crater floor. Under these conditions, the estimated rate of loss from any ice in the interior would be 10−26 to 10−27 m/s. Any water vapor that arrives here following a cometary impact on the Moon would lie permanently frozen on or below the surface. However, the surface albedo of the crater floor matches the lunar far-side, suggesting that there is no exposed surface ice. [2] [9]
This crater was named after Ernest Shackleton, an Anglo-Irish explorer of Antarctica from 1901 until his death in 1922. The name was officially adopted by the International Astronomical Union in 1994. [10] Nearby craters of note include Shoemaker, Haworth, de Gerlache, Sverdrup, Slater, and Faustini. Somewhat farther away, on the eastern hemisphere of the lunar near side, are the larger craters Amundsen and Scott, named after two other early explorers of the Antarctic continent. [11]
From the perspective of the Earth, this crater lies along the southern limb of the Moon, making observation difficult. Detailed mapping of the polar regions and farside of the Moon did not occur until the advent of orbiting spacecraft. Shackleton lies entirely within the rim of the immense South Pole-Aitken basin, which is one of the largest known impact formations in the Solar System. This basin is over 12 kilometers deep, and an exploration of its properties could provide useful information about the lunar interior. [12]
A neutron spectrometer on board the Lunar Prospector spacecraft detected enhanced concentrations of hydrogen close to the northern and southern lunar poles, including the crater Shackleton. [13] At the end of this mission in July 1999, the spacecraft was crashed into the nearby crater Shoemaker in the hope of detecting from Earth-based telescopes an impact-generated plume containing water vapor. The impact event did not produce any detectable water vapor, and this may be an indication that the hydrogen is not in the form of hydrated minerals, or that the impact site did not contain any ice. [14] Alternatively, it is possible that the crash did not excavate deeply enough into the regolith to liberate significant quantities of water vapor.
From Earth-based radar and spacecraft images of the crater edge, Shackleton appears to be relatively intact; much like a young crater that has not been significantly eroded from subsequent impacts. This may mean that the inner sides are relatively steep, which may make traversing the sides relatively difficult for a robotic vehicle. [15] In addition, it is possible that the interior floor might not have collected a significant quantity of volatiles since its formation. However other craters in the vicinity are considerably older, and may contain significant deposits of hydrogen, possibly in the form of water ice. (See Shoemaker (lunar crater), for example.)
Radar studies preceding and following the Lunar Prospector mission demonstrate that the inner walls of Shackleton are similar in reflective characteristics to those of some sunlit craters. In particular, the surroundings appear to contain a significant number of blocks in its ejecta blanket, suggesting that its radar properties are a result of surface roughness, and not ice deposits, as was previously suggested from a radar experiment involving the Clementine mission. [16] This interpretation, however, is not universally agreed upon within the scientific community. [17] Radar images of the crater at a wavelength of 13 cm show no evidence for water ice deposits. [18]
Optical imaging inside the crater was done for the first time by the Japanese lunar orbiter spacecraft Kaguya in 2007. It did not have any evidence of significant amount of water ice, down to the image resolution of 10 m per pixel. [19] [20]
On November 15, 2008, a 34-kg probe made a hard landing near the crater. [21] The Moon Impact Probe (MIP) was launched from the Indian Chandrayaan-1 spacecraft and reached the surface 25 minutes later. The probe carried a radar altimeter, video imaging system, and a mass spectrometer, which detected the presence of water during the descent. [22]
Some sites along Shackleton's rim receive almost constant illumination. At these locales sunlight is almost always available for conversion into electricity using solar panels, potentially making them good locations for future Moon landings. [23] The temperature at this site is also more favorable than at more equatorial latitudes as it does not experience the daily temperature extremes of 100 °C when the Sun is overhead, to as low as −150 °C during the lunar night.
While scientific experiments performed by Clementine and Lunar Prospector could indicate the presence of water in the polar craters, the current evidence is far from definitive. There are doubts among scientists as to whether or not the hydrogen is in the form of ice, as well as to the concentration of this "ore" with depth below the surface. Resolution of this issue will require future missions to the Moon. The potential presence of water suggests that the crater floor could be "mined" for deposits of hydrogen in water form, a commodity that is expensive to deliver directly from the Earth.
This crater has also been proposed as a future site for a large infrared telescope. [24] The low temperature of the crater floor makes it ideal for infrared observations, and solar cells placed along the rim could provide near-continuous power to the observatory. About 120 kilometers from the crater lies the 5-km tall Malapert Mountain, a peak that is perpetually visible from the Earth, and which could serve as a radio relay station when suitably equipped. [25]
In 2006, NASA named the rim of Shackleton as a potential candidate for its lunar outpost, originally slated to be up and running by 2020 and continuously staffed by a crew by 2024. The location would promote self-sustainability for lunar residents, as perpetual sunlight on the south pole would provide energy for solar panels. Furthermore, the shadowed polar regions are believed to contain the frozen water necessary for human consumption and could also be harvested for fuel manufacture. [26] The crater is a major landing site candidate for the Artemis program and could be explored by a crew starting in 2026 [27] with a possible first lunar outpost in 2028. [28]
Shackleton plays prominently in the alternate history television drama series For All Mankind . In the program, astronauts in a fictionalized version of the Apollo 15 mission land near Shackleton in 1971 and discover water ice in the crater walls. Later, the United States and the Soviet Union establish competing, crewed bases next to the crater to take advantage of the ice for drinking, oxygen and other uses.
Shackleton was also the site of the first lunar base in Mass Effect . It was chosen as a location due to its hypothesised water ice deposits.
Shackleton was the location for the site of the Chinese National Space Agency moonbase Guang Han Gong-1 in the fictional podcast series Transmissions from Colony One.
Pusher (musician), in his album published in late September 2023 named "King of the Moon", heavily references a location called "Shackleton Heights", where his album's back-story takes place.
Hermite is a lunar impact crater located along the northern lunar limb, close to the north pole of the Moon. Named for Charles Hermite, the crater was formed roughly 3.91 billion years ago.
Lunar Prospector was the third mission selected by NASA for full development and construction as part of the Discovery Program. At a cost of $62.8 million, the 19-month mission was designed for a low polar orbit investigation of the Moon, including mapping of surface composition including lunar hydrogen deposits, measurements of magnetic and gravity fields, and study of lunar outgassing events. The mission ended July 31, 1999, when the orbiter was deliberately crashed into a crater near the lunar south pole, after the presence of hydrogen was successfully detected.
Chandrayaan-1 was the first Indian lunar probe under the Chandrayaan programme. It was launched by the Indian Space Research Organisation (ISRO) in October 2008, and operated until August 2009. The mission included an orbiter and an impactor. India launched the spacecraft using a PSLV-XL rocket on 22 October 2008 at 00:52 UTC from Satish Dhawan Space Centre, at Sriharikota, Andhra Pradesh. The mission was a major boost to India's space program, as India researched and developed indigenous technology to explore the Moon. The vehicle was inserted into lunar orbit on 8 November 2008.
Cabeus is a lunar impact crater that is located about 100 km (62 mi) from the south pole of the Moon. At this location the crater is seen obliquely from Earth, and it is almost perpetually in deep shadow due to lack of sunlight. Hence, not much detail can be seen of this crater, even from orbit. Through a telescope, this crater appears near the southern limb of the Moon, to the west of the crater Malapert and to the south-southwest of Newton.
de Gerlache is a lunar impact crater that is located along the southern limb of the Moon, within a crater diameter of Shackleton at the south pole. From the Earth this crater is seen from the edge, and it lies in perpetual darkness. Thus little or no detail can be seen of this crater, other than the edge of the rim. However, the crater is clearly visible in Earth-based radar images. The crater is roughly circular, with some slight wear. No craters of note overlie the rim, although some formations may be attached to the southern and western edges.
A peak of eternal light (PEL) is a hypothetical point on the surface of an astronomical body that is always in sunlight. Such a peak must have high latitude, high elevation, and be on a body with very small axial tilt. The existence of such peaks was first postulated by Beer and Mädler in 1837. The pair said about the lunar polar mountains: "...many of these peaks have eternal sunshine". These polar peaks were later mentioned by Camille Flammarion in 1879, who speculated that there may exist pics de lumière éternelle at the poles of the Moon. PELs would be advantageous for space exploration and colonization due to the ability of an electrical device located there to receive solar power regardless of the time of day or day of the year, and the relatively stable temperature range.
Shoemaker is a lunar impact crater located near the southern pole of the Moon, within half a crater diameter of Shackleton.
Faustini is a lunar impact crater that lies near the south pole of the Moon. It is located nearly due south of the much larger crater Amundsen, and is almost attached to Shoemaker to the southwest. About one crater diameter due south is the smaller crater Shackleton at the south pole. A small crater is attached to the eastern rim of Faustini.
Hertzsprung is an enormous lunar impact crater, or impact basin, that is located on the far side of the Moon, beyond the western limb. In dimension, this formation is larger than several of the lunar mare areas on the near side. It lies in the northwestern fringe of the blast radius of the Mare Orientale impact basin. Nearby craters of note include Michelson across the northeast rim, Vavilov across the western rim, and Lucretius to the southeast.
Lunar water is water that is present on the Moon. The search for the presence of lunar water has attracted considerable attention and motivated several recent lunar missions, largely because of water's usefulness in making long-term lunar habitation feasible.
Edison is a lunar impact crater on the far side of the Moon. It is located just behind the north-northeastern limb of the Moon, a region that is sometimes brought into sight from Earth during favorable librations. However even at such times not much detail can be discerned, and the crater is better observed by orbiting spacecraft.
The Lunar Crater Observation and Sensing Satellite (LCROSS) was a robotic spacecraft operated by NASA. The mission was conceived as a low-cost means of determining the nature of hydrogen detected at the polar regions of the Moon. Launched immediately after discovery of lunar water by Chandrayaan-1, the main LCROSS mission objective was to further explore the presence of water in the form of ice in a permanently shadowed crater near a lunar polar region. It was successful in confirming water in the southern lunar crater Cabeus.
Lunar habitation is any human habitation on the Moon. Lunar habitation is provided by surface habitats, possibly as part of a moonbase.
The Lunar Reconnaissance Orbiter (LRO) is a NASA robotic spacecraft currently orbiting the Moon in an eccentric polar mapping orbit. Data collected by LRO have been described as essential for planning NASA's future human and robotic missions to the Moon. Its detailed mapping program is identifying safe landing sites, locating potential resources on the Moon, characterizing the radiation environment, and demonstrating new technologies.
The lunar south pole is the southernmost point on the Moon. It is of interest to scientists because of the occurrence of water ice in permanently shadowed areas around it. The lunar south pole region features craters that are unique in that the near-constant sunlight does not reach their interior. Such craters are cold traps that contain fossil records of hydrogen, water ice, and other volatiles dating from the early Solar System. In contrast, the lunar north pole region exhibits a much lower quantity of similarly sheltered craters.
Whipple is a lunar impact crater located on the lunar far side near the northern pole. The crater is located East of the prominent craters Byrd and Peary; the latter of which it is located on the rim of.
A permanently shadowed crater is a depression on a body in the Solar System within which lies a point that is always in darkness.
The Moon bears substantial natural resources which could be exploited in the future. Potential lunar resources may encompass processable materials such as volatiles and minerals, along with geologic structures such as lava tubes that, together, might enable lunar habitation. The use of resources on the Moon may provide a means of reducing the cost and risk of lunar exploration and beyond.
VIPER was a lunar rover project developed by NASA until cancelled in 2024. The rover would have been tasked with prospecting for lunar resources in permanently shadowed areas in the lunar south pole region, especially by mapping the distribution and concentration of water ice. The mission built on a previous NASA rover concept, the Resource Prospector, which had been cancelled in 2018.
Lunar Trailblazer is a planned small lunar orbiter, part of NASA's SIMPLEx program, that will detect and map water on the lunar surface to determine how its form, abundance, and location relate to geology. Its mission is to aid in the understanding of lunar water and the Moon's water cycle. Lunar Trailblazer is currently slated to launch in 2024 as a secondary payload on the IM-2 mission. The Principal Investigator (PI) of the mission is Bethany Ehlmann, a professor at Caltech.