Supayacetus

Last updated

Contents

Supayacetus
Temporal range: Middle Eocene
Bartonian
O
S
D
C
P
T
J
K
Pg
N
Supayacetus muizoni.png
Life reconstruction of Supayacetus.
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Mammalia
Order: Artiodactyla
Infraorder: Cetacea
Family: Basilosauridae
Genus: Supayacetus
Uhen et al. 2011
Species:
S. muizoni
Binomial name
Supayacetus muizoni

Supayacetus is an extinct genus of basilosaurid cetacean from the Middle Eocene (Bartonian stage) Paracas Formation of Peru. It has been noted for its relatively small size and basal morphology, with the sternum bearing close resemblance to those of protocetids. Due to this, it has been traditionally placed as one of the basalmost basilosaurids, except for a 2023 study that places it within the family Pachycetinae close to Neoceti. Supayacetus is monotypic, meaning the genus includes only a single species: S. muizoni.

Discovery and naming

Supayacetus is known from the holotype specimen MUSM 1465, a partial skeleton consisting of assorted remains including a badly weathered skull, various vertebrae and ribs, teeth as well as parts of the forelimbs and the sternum. As Ocucajea , it was collected in the Archaeocete Valley site, located within the middle Eocene ( 40.4 to 37.2 million years ago) Paracas Formation of the Pisco Basin, Peru. [1]

The genus is named after Supay, the Incan god of death and ruler of the underworld, in combination with the suffix "cetus" ("ketos"), Ancient Greek for whale. The species name S. muizoni honours palaeontologist Christian de Muizon who has contributed considerably to Peruvian palaeontology. [1]

Description

Although the holotype skull is only poorly preserved due to having undergone extensive weathering, one of the tympanic bullae is still rather complete. Its shape is square and a horizontal keel is present. This keel extends onto the involucrum's posterior surface, the bulb's thickened inner edge. The keel then further continues along the medial (inner) side of the tympanic bulla and eventually comes around the front of the element. The ventral surface of the bulla is broadly divided into a lateral and a medial half by the median furrow, which spans about a third of the entire length of the bone. The eustachian outlet, an opening in the inner ear, is far less prominent than it is in Carolinacetus . [1]

The manubrium, the front-most part of the sternum, is distinctly T-shaped [2] unlike the wider and flatter manubria of derived basilosaurids. Instead this bone bears much closer resemblance to those of protocetids such as Georgiacetus , Rodhocetus and Eocetus and could subsequently be an ancestral feature retained by this taxon. The sternum also has a distinct rod-like mesosternal element that is likewise similar to that of Rodhocetus. The shoulder blade is only partially preserved, obscuring how large the scapular fossae were. However, it is apparent that the bone was broadly fan-like, with a relatively large infraspinous fossa and a shallow glenoid cavity where the humerus would articulate. The head of the humerus is described as being hemispherical, similar to those of Basilosaurus , Dorudon and Zygorhiza . The greater tubercle is located further down the shaft than the head and is similar in proportions to what is seen in Dorudon. Both it and the lesser tuberosity are well-defined. The shaft of the humerus is broad and flat and forms a prominent deltapectoral crest, another feature shared by Basilosaurus, Dorudon and Zygorhiza. Eventually, the humerus ends in a single common surface that articulates with both the radius and ulna, rather than dividing into capitulum and trochlea. [1]

Like with other basilosaurids, the posterior teeth of Supayacetus feature a large central crown with accessory denticles before and after it. In the case of Supayacetus, the cheek teeth bear only two such denticles behind the central peak, however little else can be said about them as most of the anteromedial section of the holotype tooth is missing. This also means that it is not possible to precisely identify whether the tooth was a premolar or a molar, though the latter is deemed more likely. Overall the denticles are very prominent, much larger than those of Georgiacetus and remingtonocetids. [1]

Based on skull elements, Supayacetus was probably larger than Protocetus but smaller than the majority of other basilosaurids. [1] [3]

Phylogeny

When described in 2011, the position of Supayacetus among basilosaurids was not well understood, with the original authors simply placing it within an unresolved Basilosauridae featuring it, Basilosaurus, Dorudon and Ocucajea. [1] The paper however did already remark on the notably basal anatomy of the sternum, which would again be noted by Gol'din and colleagues in 2014. Providing a more detailed phylogeny with a much greater number of taxa, they place Supayacetus as a very basal basilosaurid slightly less derived than Basilotritus (which some authors consider a synonym of Pachycetus ). [4] [2] [5]

A markedly different position was recovered by Antar and colleagues in 2023, whose work stands out for two reasons. For one, their phylogenetic analysis weakly supports the idea that Supayacetus wasn't simply basal to Basilotritus/Pachycetus, but actually formed a monophyletic clade with the two then-recognized species and Antaecetus, which would place it in the family Pachycetinae. More importantly, this family was recovered not as basal to other basilosaurids, but more derived, being placed as the sister group to the Neoceti. [6]

Pelagiceti

Paleobiology

The Paracas Formation is thought to preserve an environment close to the shore with cold water temperatures as indicated by the specific species of foraminifera found there. The same sediments also yielded the scales of anchoveta and sardines, which generally correlate with cold water environments like today's Humboldt current. Supayacetus inhabited these waters with the distantly related Ocucajea. [1] [5]

Related Research Articles

<i>Rodhocetus</i> Genus of mammals

Rodhocetus is an extinct genus of protocetid early whale known from the Lutetian of Pakistan. The best-known protocetid, Rodhocetus is known from two partial skeletons that taken together give a complete image of an Eocene whale that had short limbs with long hands and feet that were probably webbed and a sacrum that was immobile with four partially fused sacral vertebrae. It is one of several extinct whale genera that possess land mammal characteristics, thus demonstrating the evolutionary transition from land to sea.

<span class="mw-page-title-main">Evolution of cetaceans</span>

The evolution of cetaceans is thought to have begun in the Indian subcontinent from even-toed ungulates (Artiodactyla) 50 million years ago (mya) and to have proceeded over a period of at least 15 million years. Cetaceans are fully aquatic marine mammals belonging to the order Artiodactyla and branched off from other artiodactyls around 50 mya. Cetaceans are thought to have evolved during the Eocene, the second epoch of the present-extending Cenozoic Era. Molecular and morphological analyses suggest Cetacea share a relatively recent closest common ancestor with hippopotami and that they are sister groups. Being mammals, they surface to breathe air; they have 5 finger bones (even-toed) in their fins; they nurse their young; and, despite their fully aquatic life style, they retain many skeletal features from their terrestrial ancestors. Research conducted in the late 1970s in Pakistan revealed several stages in the transition of cetaceans from land to sea.

<i>Ambulocetus</i> Genus of extinct mammals of the order Cetacea

Ambulocetus is a genus of early amphibious cetacean from the Kuldana Formation in Pakistan, roughly 48 or 47 million years ago during the Early Eocene (Lutetian). It contains one species, Ambulocetus natans, known solely from a near-complete skeleton. Ambulocetus is among the best-studied of Eocene cetaceans, and serves as an instrumental find in the study of cetacean evolution and their transition from land to sea, as it was the first cetacean discovered to preserve a suite of adaptations consistent with an amphibious lifestyle. Ambulocetus is classified in the group Archaeoceti—the ancient forerunners of modern cetaceans whose members span the transition from land to sea—and in the family Ambulocetidae, which includes Himalayacetus and Gandakasia.

<i>Basilosaurus</i> Prehistoric cetacean genus from the Late Eocene epoch

Basilosaurus is a genus of large, predatory, prehistoric archaeocete whale from the late Eocene, approximately 41.3 to 33.9 million years ago (mya). First described in 1834, it was the first archaeocete and prehistoric whale known to science. Fossils attributed to the type species B. cetoides were discovered in the United States. They were originally thought to be of a giant reptile, hence the suffix "-saurus", Ancient Greek for "lizard". The animal was later found to be an early marine mammal, which prompted attempts at renaming the creature, which failed as the rules of zoological nomenclature dictate using the original name given. Fossils were later found of the second species, B. isis, in 1904 in Egypt, Western Sahara, Morocco, Jordan, Tunisia, and Pakistan. Fossils have also been unearthed in the southeastern United States and Peru.

<span class="mw-page-title-main">Basilosauridae</span> Family of mammals

Basilosauridae is a family of extinct cetaceans. They lived during the middle to the early late Eocene and are known from all continents, including Antarctica. They were probably the first fully aquatic cetaceans. The group is noted to be a paraphyletic assemblage of stem group whales from which the monophyletic Neoceti are derived.

<span class="mw-page-title-main">Archaeoceti</span> Paraphyletic group of primitive cetaceans from Early Eocene to Late Oligocene

Archaeoceti, or Zeuglodontes in older literature, is a paraphyletic group of primitive cetaceans that lived from the Early Eocene to the late Oligocene. Representing the earliest cetacean radiation, they include the initial amphibious stages in cetacean evolution, thus are the ancestors of both modern cetacean suborders, Mysticeti and Odontoceti. This initial diversification occurred in the shallow waters that separated India and Asia 53 to 45 mya, resulting in some 30 species adapted to a fully oceanic life. Echolocation and filter-feeding evolved during a second radiation 36 to 35 mya.

<i>Zygorhiza</i> Genus of mammals

Zygorhiza ("Yoke-Root") is an extinct genus of basilosaurid early whale known from the Late Eocene of Louisiana, Alabama, and Mississippi, United States, and the Bartonian to the late Eocene of New Zealand . Specimens reported from Europe are considered Dorudontinae incertae sedis.

Pachycetus is an extinct genus of pachycetine basilosaurid from Middle Eocene of the eastern United States and Europe. The best known remains generally suggest that Pachycetus lived during the Bartonian, however, fossil finds have also been recovered from sediments of less certain age that could suggest that it may have also lived during the Late Lutetian and Early Priabonian. Pachycetus is primarily known from vertebrae and ribs and is characterized by its highly osteosclerotic and pachyostotic skeleton. This means the bones not only featured thickened rings of cortical bone surrounding the internal cancellous bone, but the cortical bone was furthermore much denser than in other basilosaurids. Two species of Pachycetus are recognized: Pachycetus paulsonii from Europe and Pachycetus wardii from the United States. A third species might be represented by "Zeuglodon" wanklyni.

<i>Georgiacetus</i> Extinct genus of mammals

Georgiacetus is an extinct genus of ancient whale known from the Eocene period of the United States. Fossils are known from Georgia, Alabama, and Mississippi and protocetid fossils from the right time frame, but not yet confirmed as Georgiacetus, have been found in Texas and South Carolina.

Gaviacetus is an extinct archaeocete whale that lived approximately 45 million years ago. Gaviacetus was named for its characteristic narrow rostrum and the fast pursuit predation suggested by its unfused sacral vertebrae.

Basiloterus is an extinct genus of late-Eocene archaeocete whale from the Drazinda Formation in southwestern Punjab, Pakistan and possibly also the Barton Group of England. Known from two isolated lumbar vertebrae, the elongated nature of these elements has been taken as possible evidence that Basiloterus was a close relative of the better-known Basilosaurus. This was also the reasoning behind its name, which roughly translates to "another king". However, publications since then not only lead to some major changes of the internal relationships within Basilosauridae but have also called into question how diagnostic elongated vertebrae are for members of this group, as other early whales have developed similar anatomy independently. Though the identity of Basiloterus as a basilosaurid is generally maintained, its exact position within more recent interpretations of the family is unclear.

Chrysocetus is a genus of extinct early whale known from Late Eocene-aged fossils of the eastern United States and western Africa.

Protocetidae, the protocetids, form a diverse and heterogeneous group of extinct cetaceans known from Asia, Europe, Africa, South America, and North America.

Pontogeneus is a genus of extinct cetacean known from fossils recovered from the Late Eocene sediments of the southeastern United States.

<i>Ocucajea</i> Species of mammal (fossil)

Ocucajea is an extinct genus of basilosaurid cetacean from Middle Eocene deposits of southern Peru. Ocucajea is known from the holotype MUSM 1442, a partial skeleton. It was collected in the Archaeocete Valley site, from the Paracas Formation of the Pisco Basin about 40.4 to 37.2 million years ago.

Babiacetus is an extinct genus of early cetacean that lived during the late Lutetian middle Eocene of India . It was named after its type locality, the Harudi Formation in the Babia Hills, Kutch District, Gujarat, India.

<i>Masracetus</i> Genus of mammals

Masracetus is an extinct genus of basilosaurid ancient whale known from the Late Eocene of Egypt.

Eocetus is an extinct protocetid early whale known from the early-late Eocene Giushi Formation in Gebel Mokattam, outside Cairo, Egypt. The specimen was first named by Fraas as Mesocetus schweinfurthi. However, the name Mesocetus was previously used causing a change to the species name to Eocetus schweinfurthi. Since the genus was first described in the early 20th century, several other specimens, mostly isolated vertebrae, have been attributed to Eocetus, but the taxonomic status of these widely distributed specimens remain disputed.

Pachycetinae is an extinct subfamily of basilosaurid cetaceans that lived during the middle Eocene. The best-dated remains stem from Bartonian strata, but some finds suggest that they could have first appeared during the Lutetian and may have survived until the Priabonian. Fossils of pachycetines are chiefly known from the southern United States, Ukraine, Morocco and Germany, among others. They differ from other basilosaurids in having pachyostotic and osteosclerotic vertebrae and ribs, making them denser and heavier by comparison. Based on this it has been suggested that these whales lived in shallow waters and that these thickened bones act as a buoyancy control as seen in sirenians. Analysis of the teeth suggests that pachycetines had a varying diet, with the robust teeth of the larger Pachycetus indicating that it possibly fed on sharks, whereas the more gracile teeth of Antaecetus suggest a diet of smaller prey items. The clade currently only includes two genera, Antaecetus and Pachycetus, but a 2023 study suggests that the Peruvian Supayacetus may at least be a close relative.

Tupelocetus is an extinct genus of early cetacean found in the Bartonian Middle Eocene Tupelo Bay Formation, in Berkeley County, South Carolina.

References

  1. 1 2 3 4 5 6 7 8 Uhen, Mark D.; Pyenson, Nicholas D.; Devries, Thomas J.; Urbina, Mario; Renne, Paul R. (2011). "New Middle Eocene Whales from the Pisco Basin of Peru". Journal of Paleontology. 85 (5): 955–69. Bibcode:2011JPal...85..955U. doi:10.1666/10-162.1. hdl:10088/17509. OCLC   802202947. S2CID   115130412.
  2. 1 2 Gol’din, P.; Zvonok, E.; Rekovets, L.; Kovalchuk, A.; Krakhmalnaya, T. (2014). "Basilotritus (Cetacea: Pelagiceti) from the Eocene of Nagornoye (Ukraine): New data on anatomy, ontogeny and feeding of early basilosaurids". Comptes Rendus Palevol. 13 (4): 267–276. Bibcode:2014CRPal..13..267G. doi:10.1016/j.crpv.2013.11.002. ISSN   1631-0683.
  3. Uhen, M.D.; Taylor, D. (2020). "A basilosaurid archaeocete (Cetacea, Pelagiceti) from the Late Eocene of Oregon, USA". PeerJ. 8: e9809. doi: 10.7717/peerj.9809 . PMC   7534682 . PMID   33062412.
  4. Gol'din, P.; Zvonok, E. (2013). "Basilotritus uheni, a New Cetacean (Cetacea, Basilosauridae) from the Late Middle Eocene of Eastern Europe". Journal of Paleontology. 87 (2): 254–268. Bibcode:2013JPal...87..254G. doi:10.1666/12-080R.1.
  5. 1 2 Bianucci, G.; Collareta, A. (2022). "An overview of the fossil record of cetaceans from the East Pisco Basin (Peru)". Bollettino della Società Paleontologica Italiana. 61 (1): 19–20. doi:10.4435/BSPI.2022.04.
  6. Antar, M.S.; Glaohar, A.S.; El-Desouky, H.; Seiffert, E.R.; El-Sayed, S.; Claxton, A.G.; Sallam, H.M. (2023). "A diminutive new basilosaurid whale reveals the trajectory of the cetacean life histories during the Eocene". Commun Biol. 6 (707): 707. doi: 10.1038/s42003-023-04986-w . PMC   10415296 . PMID   37563270.