Pakicetidae Temporal range: Early Eocene, | |
---|---|
Pakicetus | |
Scientific classification | |
Domain: | Eukaryota |
Kingdom: | Animalia |
Phylum: | Chordata |
Class: | Mammalia |
Order: | Artiodactyla |
Infraorder: | Cetacea |
Informal group: | † Archaeoceti |
Family: | † Pakicetidae Thewissen, Madar & Hussain 1996 |
Genera | |
Pakicetidae ("Pakistani whales") is an extinct family of Archaeoceti (early whales) that lived during the Early Eocene in Pakistan. [1] Unlike modern cetaceans, they had well developed limbs and were capable of walking.
Dehm & Oettingen-Spielberg 1958 described the first pakicetid, Ichthyolestes , but at the time they did not recognize it as a cetacean, identifying it, instead, it as a fish-eating mesonychid. Robert West was the first to identify pakicetids as cetaceans in 1980 and, after discovering a braincase, Phillip Gingerich and Donald Russell described the genus Pakicetus in 1981. During the following two decades, more research resulted in additional pakicetid cranial material and by 2001 postcranial material for the family had been described. Though all parts of pakicetid postcrania are known, no complete skeleton from a single individual has been recovered. [2] The pakicetid goldmine is the "H-GSP Locality 62" site in the Kala Chitta Hills where fossils from all three genera have been found. However, this site is so littered with bones that identifying bones from a single individual is impossible, and pakicetid skeletons are consequently composites of bones from several individuals. [3]
Pakicetids have been found in or near river deposits in northern Pakistan and northwestern India, a region which was probably arid with only temporary streams when these animals lived there. No pakicetids have been found in marine deposits, and they were apparently terrestrial or freshwater animals. Their long limbs and small hands and feet also indicate they were poor swimmers. Their bones are heavy and compact and were probably used as ballast; they clearly indicate pakicetids were not fast runners notwithstanding their otherwise cursorial morphology. Most likely, pakicetids lived in or near bodies of freshwater and their diet could have included both land animals and aquatic organisms. During the Eocene, Pakistan was an island-continent off the coastal region of the Eurasian land mass and therefore an ideal habitat for the evolution and diversification of the Pakicetids. [2]
Pakicetids have many apomorphic traits (derived traits shared by several taxa) found in artiodactyls, including: [1] | Traits linking pakicetids to cetaceans include: [1] |
|
|
Pakicetid ears had an external auditory meatus and ear ossicles (i.e. incus, malleus, tympanic ring, etcetera) similar to those in living land mammals and most likely used normal land mammal hearing in air. In the pakicetid mandible, the mandibular foramen is small and comparable in size to those of extant land mammals and the acoustic mandibular fat pad characteristic of later whales was obviously not present. The lateral wall of the mandible is also relatively thick in pakicetids, further preventing sound transmission through the jaw. The tympanic bulla in pakicetid ears is similar to those in all cetaceans, with a relatively thin lateral wall and thickened medial part known as the involucrum. However, in contrast to later cetaceans, the tympanic bone makes contact with the periotic bone which is firmly attached to the skull leaving no space for isolating air sinuses, effectively preventing directional hearing in water. Pakicetids most likely used bone conduction for hearing in water. [4]
Interpretations of pakicetid habitat and locomotory behaviour varies considerably:
In 2001, it was concluded by Thiwissen et al. that "pakicetids were terrestrial mammals, no more amphibious than a tapir." According to them, none of the aquatic adaptations found in the oldest obligate aquatic cetaceans, basilosaurids and dorudontids, are present in pakicetids. Pakicetid cervical vertebrae are longer than in late Eocene whales, the thoracic vertebrae increase in size from the neck backwards, and the lumbar and caudal vertebrae are longer than in modern cetaceans (but still shorter than in some extinct cetaceans with undulating spines.) Motion in the spine of pakicetids was further reduced by the revolute zygapophyses (processes between the vertebrae) like in stiff-backed runners such as mesonychians. The sacral vertebrae are fused and the sacroiliac joints present like in land mammals and amphibious cetaceans. [5]
Furthermore, according to Thewissen et al., the pakicetid scapulae have large supraspinous fossae with small acromions, in contrast to other cetaceans. The deltopectoral crests are absent in the long and slender humeri like in cursorial animals but unlike other Eocene cetaceans. Pakicetid elbows are rigid hinge joints like in running mammals and the forearms are not flattened like in truly aquatic cetaceans. In the pakicetid pelvis, the innominates are large and the ischia are longer than the ilia. The pakicetid tibiae are long with a short tibial crest. Hindlimb features that all more reminiscent of running and jumping animals than swimming animals. [5]
Gingerich 2003 disagreed and got support from Madar 2007: postcranial morphology and microstructural features suggest that pakicetids were adapted to an aquatic lifestyle which included bottom wading, paddling, and undulatory swimming, but probably not sustained running. Isotopic evidence indicate Pakicetids spent a considerable part of their life in freshwater and probably ate freshwater prey. [1] This view was further reiterated by Gingerich in a 2017 paper. [6]
Rodhocetus is an extinct genus of protocetid early whale known from the Lutetian of Pakistan. The best-known protocetid, Rodhocetus is known from two partial skeletons that taken together give a complete image of an Eocene whale that had short limbs with long hands and feet that were probably webbed and a sacrum that was immobile with four partially fused sacral vertebrae. It is one of several extinct whale genera that possess land mammal characteristics, thus demonstrating the evolutionary transition from land to sea.
The evolution of cetaceans is thought to have begun in the Indian subcontinent from even-toed ungulates (Artiodactyla) 50 million years ago (mya) and to have proceeded over a period of at least 15 million years. Cetaceans are fully aquatic mammals belonging to the order Artiodactyla and branched off from other artiodactyls around 50 mya. Cetaceans are thought to have evolved during the Eocene, the second epoch of the present-extending Cenozoic Era. Molecular and morphological analyses suggest Cetacea share a relatively recent closest common ancestor with hippopotami and that they are sister groups. Being mammals, they surface to breathe air; they have five finger bones (even-toed) in their fins; they nurse their young; and, despite their fully aquatic life style, they retain many skeletal features from their terrestrial ancestors. Research conducted in the late 1970s in Pakistan revealed several stages in the transition of cetaceans from land to sea.
Ambulocetus is a genus of early amphibious cetacean from the Kuldana Formation in Pakistan, roughly 48 or 47 million years ago during the Early Eocene (Lutetian). It contains one species, Ambulocetus natans, known solely from a near-complete skeleton. Ambulocetus is among the best-studied of Eocene cetaceans, and serves as an instrumental find in the study of cetacean evolution and their transition from land to sea, as it was the first cetacean discovered to preserve a suite of adaptations consistent with an amphibious lifestyle. Ambulocetus is classified in the group Archaeoceti—the ancient forerunners of modern cetaceans whose members span the transition from land to sea—and in the family Ambulocetidae, which includes Himalayacetus and Gandakasia.
Ambulocetidae is a family of early cetaceans from Pakistan. The genus Ambulocetus, after which the family is named, is by far the most complete and well-known ambulocetid genus due to the excavation of an 80% complete specimen of Ambulocetus natans. The other two genera in the family, Gandakasia and Himalayacetus, are known only from teeth and mandibular fragments. Retaining large hindlimbs, it was once thought that they could walk on land—indeed, their name means "walking whales"—, but recent research suggests they may have been fully aquatic like modern cetaceans. Though the research has some limits that cast doubt on this conclusion.
Basilosaurus is a genus of large, predatory, prehistoric archaeocete whale from the late Eocene, approximately 41.3 to 33.9 million years ago (mya). First described in 1834, it was the first archaeocete and prehistoric whale known to science. Fossils attributed to the type species B. cetoides were discovered in the United States. They were originally thought to be of a giant reptile, hence the suffix "-saurus", Ancient Greek for "lizard". The animal was later found to be an early marine mammal, prompting attempts at renaming the creature, which failed as the rules of zoological nomenclature dictate using the original name given. Fossils were later found of the second species, B. isis, in 1904 in Egypt, Western Sahara, Morocco, Jordan, Tunisia, and Pakistan. Fossils have also been unearthed in the southeastern United States and Peru.
Pakicetus is an extinct genus of amphibious cetacean of the family Pakicetidae, which was endemic to Indian Subcontinent during the Ypresian period, about 50 million years ago. It was a wolf-like mammal, about 1–2 m long, and lived in and around water where it ate fish and other animals. The name Pakicetus comes from the fact that the first fossils of this extinct amphibious whale were discovered in Pakistan. The vast majority of paleontologists regard it as the most basal whale, representing a transitional stage between land mammals and whales. It belongs to the even-toed ungulates with the closest living non-cetacean relative being the hippopotamus.
Archaeoceti, or Zeuglodontes in older literature, is a paraphyletic group of primitive cetaceans that lived from the Early Eocene to the late Oligocene. Representing the earliest cetacean radiation, they include the initial amphibious stages in cetacean evolution, thus are the ancestors of both modern cetacean suborders, Mysticeti and Odontoceti. This initial diversification occurred in the shallow waters that separated India and Asia 53 to 45 mya, resulting in some 30 species adapted to a fully oceanic life. Echolocation and filter-feeding evolved during a second radiation 36 to 35 mya.
Himalayacetus is an extinct genus of carnivorous aquatic mammal of the family Ambulocetidae. The holotype was found in Himachal Pradesh, India, in what was the remnants of the ancient Tethys Ocean during the Early Eocene. This makes Himalayacetus the oldest archaeocete known, extending the fossil record of whales some 3.5 million years.
Nalacetus is an extinct pakicetid early whale, fossils of which have been found in Lutetian red beds in Punjab, Pakistan. Nalacetus lived in a fresh water environment, was amphibious, and carnivorous. It was considered monophyletic by Cooper, Thewissen & Hussain 2009. It was said to be wolf-sized and one of the earliest forms of the order Cetacea.
Gandakasia is an extinct genus of ambulocetid from Pakistan, that lived in the Eocene epoch. It probably caught its prey near rivers or streams.
Ichthyolestes is an extinct genus of archaic cetacean that was endemic to Indo-Pakistan during the Lutetian stage. To date, this monotypic genus is only represented by Ichthyolestes pinfoldi.
Kutchicetus is an extinct genus of early whale of the family Remingtonocetidae that lived during Early-Middle Eocene in what is now the coastal border of Pakistan and India. It is closely related to Andrewsiphius with which it was synonymized by Gingerich et al. 2001. Thewissen & Bajpai 2009 proposed a new clade, Andrewsiphiinae, for the two species. Later authors, however, still accept both as separate genera.
Remingtonocetus is an extinct genus of early cetacean freshwater aquatic mammals of the family Remingtonocetidae endemic to the coastline of the ancient Tethys Ocean during the Eocene. It was named after naturalist Remington Kellogg.
Remingtonocetidae is a diverse family of early aquatic mammals of the order Cetacea. The family is named after paleocetologist Remington Kellogg.
Gaviacetus is an extinct archaeocete whale that lived approximately 45 million years ago. Gaviacetus was named for its characteristic narrow rostrum and the fast pursuit predation suggested by its unfused sacral vertebrae.
Babiacetus is an extinct genus of early cetacean that lived during the late Lutetian middle Eocene of India . It was named after its type locality, the Harudi Formation in the Babia Hills, Kutch District, Gujarat, India.
Indocetus is a protocetid early whale known from the late early Eocene Harudi Formation in Kutch, India.
Eocetus is an extinct protocetid early whale known from the early-late Eocene Giushi Formation in Gebel Mokattam, outside Cairo, Egypt. Fossil remains have also been discovered in the Aridal Formation of the Sahara Desert in southwestern Morocco.
Johannes Gerardus Marie (Hans) Thewissen is a Dutch-American paleontologist known for his significant contributions to the field of whale evolution. Thewissen's fieldwork has led to the discovery of key fossils that have shed light on the transition of whales from land to water, including the discovery of Ambulocetus, Pakicetus, Indohyus, and Kutchicetus. In addition to his work on fossil discoveries, Thewissen also studies modern bowhead and beluga whales in Alaska, focusing on their biology and the implications of this knowledge for management and conservation efforts. His research has been instrumental in deepening our understanding of cetacean evolution and the adaptations that allowed these mammals to transition from terrestrial to fully aquatic lifestyles.
The Kuldana Formation is a fossil-bearing geological formation of Lutetian age which crops out in northern Pakistan. The abundant fossil remains were deposited by rivers and estuaries crossing an arid to semi-arid environment, between several marine transgressions. Its fossil fauna is best known for the early cetaceans Indohyus, Pakicetus and Ambulocetus, that helped to shed a new light on the evolution of whales, but it also features a large number of early ungulates, rodents and primates.