Tinbergen's four questions

Last updated

Tinbergen's four questions, named after 20th century biologist Nikolaas Tinbergen, are complementary categories of explanations for animal behaviour. These are also commonly referred to as levels of analysis. [1] It suggests that an integrative understanding of behaviour must include ultimate (evolutionary) explanations, in particular:

Contents

Four categories of questions and explanations

When asked about the purpose of sight in humans and animals, even elementary-school children can answer that animals have vision to help them find food and avoid danger (function/adaptation). Biologists have three additional explanations: sight is caused by a particular series of evolutionary steps (phylogeny), the mechanics of the eye (mechanism/causation), and even the process of an individual's development (ontogeny). This schema constitutes a basic framework of the overlapping behavioural fields of ethology, behavioural ecology, comparative psychology, sociobiology, evolutionary psychology, and anthropology. Julian Huxley identified the first three questions. Niko Tinbergen gave only the fourth question, as Huxley's questions failed to distinguish between survival value and evolutionary history; Tinbergen's fourth question helped resolve this problem. [3]

Table of categories
Diachronic versus synchronic perspective
Dynamic view
Explanation of current form in terms of a historical sequence
Static view
Explanation of the current form of species
How vs. why questionsProximate view
How an individual organism's structures function
Ontogeny (development)
Developmental explanations for changes in individuals, from DNA to their current form
Mechanism (causation)
Mechanistic explanations for how an organism's structures work
Ultimate (evolutionary) view
Why a species evolved the structures (adaptations) it has
Phylogeny (evolution)
The history of the evolution of sequential changes in a species over many generations
Function (adaptation)
A species trait that solves a reproductive or survival problem in the current environment

Evolutionary (ultimate) explanations

First question: Function (adaptation)

Darwin's theory of evolution by natural selection is the only scientific explanation for why an animal's behaviour is usually well adapted for survival and reproduction in its environment. However, claiming that a particular mechanism is well suited to the present environment is different from claiming that this mechanism was selected for in the past due to its history of being adaptive. [3]

The literature conceptualizes the relationship between function and evolution in two ways. On the one hand, function and evolution are often presented as separate and distinct explanations of behaviour. [4] On the other hand, the common definition of adaptation is a central concept in evolution: a trait that was functional to the reproductive success of the organism and that is thus now present due to being selected for; that is, function and evolution are inseparable. However, a trait can have a current function that is adaptive without being an adaptation in this sense, if for instance the environment has changed. Imagine an environment in which having a small body suddenly conferred benefit on an organism when previously body size had had no effect on survival. [3] A small body's function in the environment would then be adaptive, but it would not become an adaptation until enough generations had passed in which small bodies were advantageous to reproduction for small bodies to be selected for. Given this, it is best to understand that presently functional traits might not all have been produced by natural selection. [3] The term "function" is preferable to "adaptation", because adaptation is often construed as implying that it was selected for due to past function. This corresponds to Aristotle's final cause. [5]

Second question: Phylogeny (evolution)

Evolution captures both the history of an organism via its phylogeny, and the history of natural selection working on function to produce adaptations. [6] There are several reasons why natural selection may fail to achieve optimal design (Mayr 2001:140–143; Buss et al. 1998). One entails random processes such as mutation and environmental events acting on small populations. Another entails the constraints resulting from early evolutionary development. Each organism harbors traits, both anatomical and behavioural, of previous phylogenetic stages, since many traits are retained as species evolve.

Reconstructing the phylogeny of a species often makes it possible to understand the "uniqueness" of recent characteristics: Earlier phylogenetic stages and (pre-) conditions which persist often also determine the form of more modern characteristics. For instance, the vertebrate eye (including the human eye) has a blind spot, whereas octopus eyes do not. In those two lineages, the eye was originally constructed one way or the other. Once the vertebrate eye was constructed, there were no intermediate forms that were both adaptive and would have enabled it to evolve without a blind spot.

It corresponds to Aristotle's formal cause. [5]

Proximate explanations

Third question: Mechanism (causation)

Some prominent classes of Proximate causal mechanisms include:

  • The brain: For example, Broca's area, a small section of the human brain, has a critical role in linguistic capability.
  • Hormones: Chemicals used to communicate among cells of an individual organism. Testosterone, for instance, stimulates aggressive behaviour in a number of species.
  • Pheromones: Chemicals used to communicate among members of the same species. Some species (e.g., dogs and some moths) use pheromones to attract mates.

In examining living organisms, biologists are confronted with diverse levels of complexity (e.g. chemical, physiological, psychological, social). They therefore investigate causal and functional relations within and between these levels. A biochemist might examine, for instance, the influence of social and ecological conditions on the release of certain neurotransmitters and hormones, and the effects of such releases on behaviour, e.g. stress during birth has a tocolytic (contraction-suppressing) effect.

However, awareness of neurotransmitters and the structure of neurons is not by itself enough to understand higher levels of neuroanatomic structure or behaviour: "The whole is more than the sum of its parts." All levels must be considered as being equally important: cf. transdisciplinarity, Nicolai Hartmann's "Laws about the Levels of Complexity."

It corresponds to Aristotle's efficient cause. [5]

Fourth question: Ontogeny (development)

Ontogeny is the process of development of an individual organism from the zygote through the embryo to the adult form.

In the latter half of the twentieth century, social scientists debated whether human behaviour was the product of nature (genes) or nurture (environment in the developmental period, including culture).

An example of interaction (as distinct from the sum of the components) involves familiarity from childhood. In a number of species, individuals prefer to associate with familiar individuals but prefer to mate with unfamiliar ones (Alcock 2001:85–89, Incest taboo, Incest). By inference, genes affecting living together interact with the environment differently from genes affecting mating behaviour. A simple example of interaction involves plants: Some plants grow toward the light (phototropism) and some away from gravity (gravitropism).

Many forms of developmental learning have a critical period, for instance, for imprinting among geese and language acquisition among humans. In such cases, genes determine the timing of the environmental impact.

A related concept is labeled "biased learning" (Alcock 2001:101–103) and "prepared learning" (Wilson, 1998:86–87). For instance, after eating food that subsequently made them sick, rats are predisposed to associate that food with smell, not sound (Alcock 2001:101–103). Many primate species learn to fear snakes with little experience (Wilson, 1998:86–87). [7]

See developmental biology and developmental psychology.

Explanations of Animal Behaviour: Causal Relationships; Adopted from Tinbergen (1963). 4 behavior questions.png
Explanations of Animal Behaviour: Causal Relationships; Adopted from Tinbergen (1963).

It corresponds to Aristotle's material cause. [5]

Causal relationships

The figure shows the causal relationships among the categories of explanations. The left-hand side represents the evolutionary explanations at the species level; the right-hand side represents the proximate explanations at the individual level. In the middle are those processes' end products—genes (i.e., genome) and behaviour, both of which can be analyzed at both levels.

Evolution, which is determined by both function and phylogeny, results in the genes of a population. The genes of an individual interact with its developmental environment, resulting in mechanisms, such as a nervous system. A mechanism (which is also an end-product in its own right) interacts with the individual's immediate environment, resulting in its behaviour.

Here we return to the population level. Over many generations, the success of the species' behaviour in its ancestral environment—or more technically, the environment of evolutionary adaptedness (EEA) may result in evolution as measured by a change in its genes.

In sum, there are two processes—one at the population level and one at the individual level—which are influenced by environments in three time periods.

Examples

Vision

Four ways of explaining visual perception:

Westermarck effect

Four ways of explaining the Westermarck effect, the lack of sexual interest in one's siblings (Wilson, 1998:189–196):

Romantic love

Four ways of explaining romantic love have been used to provide a comprehensive biological definition (Bode & Kushnick, 2021): [8]

Sleep

Sleep has been described using Tinbergen's four questions as a framework (Bode & Kuula, 2021): [9]

Use of the four-question schema as "periodic table"

Konrad Lorenz, Julian Huxley and Niko Tinbergen were familiar with both conceptual categories (i.e. the central questions of biological research: 1. - 4. and the levels of inquiry: a. - g.), the tabulation was made by Gerhard Medicus. [10] The tabulated schema is used as the central organizing device in many animal behaviour, ethology, behavioural ecology and evolutionary psychology textbooks (e.g., Alcock, 2001). One advantage of this organizational system, what might be called the "periodic table of life sciences," is that it highlights gaps in knowledge, analogous to the role played by the periodic table of elements in the early years of chemistry.

1. Mechanism2. Ontogeny3. Function4. Phylogeny
a. Molecule
b. Cell
c. Organ
d. Individual
e. Family
f. Group
g. Society

This "biopsychosocial" framework clarifies and classifies the associations between the various levels of the natural and social sciences, and it helps to integrate the social and natural sciences into a "tree of knowledge" (see also Nicolai Hartmann's "Laws about the Levels of Complexity"). Especially for the social sciences, this model helps to provide an integrative, foundational model for interdisciplinary collaboration, teaching and research (see The Four Central Questions of Biological Research Using Ethology as an ExamplePDF).

Related Research Articles

<span class="mw-page-title-main">Ethology</span> Scientific objective study of non-human animal behaviour

Ethology is a branch of zoology that studies the behaviour of non-human animals. It has its scientific roots in the work of Charles Darwin and of American and German ornithologists of the late 19th and early 20th century, including Charles O. Whitman, Oskar Heinroth, and Wallace Craig. The modern discipline of ethology is generally considered to have begun during the 1930s with the work of the Dutch biologist Nikolaas Tinbergen and the Austrian biologists Konrad Lorenz and Karl von Frisch, the three winners of the 1973 Nobel Prize in Physiology or Medicine. Ethology combines laboratory and field science, with a strong relation to neuroanatomy, ecology, and evolutionary biology.

Evolutionary psychology is a theoretical approach in psychology that examines cognition and behavior from a modern evolutionary perspective. It seeks to identify human psychological adaptations with regards to the ancestral problems they evolved to solve. In this framework, psychological traits and mechanisms are either functional products of natural and sexual selection or non-adaptive by-products of other adaptive traits.

<span class="mw-page-title-main">Ontogeny</span> Origination and development of an organism

Ontogeny is the origination and development of an organism, usually from the time of fertilization of the egg to adult. The term can also be used to refer to the study of the entirety of an organism's lifespan.

Sociobiology is a field of biology that aims to explain social behavior in terms of evolution. It draws from disciplines including psychology, ethology, anthropology, evolution, zoology, archaeology, and population genetics. Within the study of human societies, sociobiology is closely allied to evolutionary anthropology, human behavioral ecology, evolutionary psychology, and sociology.

Zoology is the scientific study of animals. Its studies include the structure, embryology, classification, habits, and distribution of all animals, both living and extinct, and how they interact with their ecosystems. Zoology is one of the primary branches of biology. The term is derived from Ancient Greek ζῷον, zōion ('animal'), and λόγος, logos.

<span class="mw-page-title-main">Nikolaas Tinbergen</span> Dutch zoologist and ethologist (1907–1988)

Nikolaas "Niko" Tinbergen was a Dutch biologist and ornithologist who shared the 1973 Nobel Prize in Physiology or Medicine with Karl von Frisch and Konrad Lorenz for their discoveries concerning the organization and elicitation of individual and social behavior patterns in animals. He is regarded as one of the founders of modern ethology, the study of animal behavior.

<span class="mw-page-title-main">Group selection</span> Proposed mechanism of evolution

Group selection is a proposed mechanism of evolution in which natural selection acts at the level of the group, instead of at the level of the individual or gene.

<span class="mw-page-title-main">Proximate and ultimate causation</span> Event which is closest to, or immediately responsible for causing, some observed result

A proximate cause is an event which is closest to, or immediately responsible for causing, some observed result. This exists in contrast to a higher-level ultimate cause which is usually thought of as the "real" reason something occurred.

<span class="mw-page-title-main">Psychological adaptation</span>

A psychological adaptation is a functional, cognitive or behavioral trait that benefits an organism in its environment. Psychological adaptations fall under the scope of evolved psychological mechanisms (EPMs), however, EPMs refer to a less restricted set. Psychological adaptations include only the functional traits that increase the fitness of an organism, while EPMs refer to any psychological mechanism that developed through the processes of evolution. These additional EPMs are the by-product traits of a species’ evolutionary development, as well as the vestigial traits that no longer benefit the species’ fitness. It can be difficult to tell whether a trait is vestigial or not, so some literature is more lenient and refers to vestigial traits as adaptations, even though they may no longer have adaptive functionality. For example, xenophobic attitudes and behaviors, some have claimed, appear to have certain EPM influences relating to disease aversion, however, in many environments these behaviors will have a detrimental effect on a person's fitness. The principles of psychological adaptation rely on Darwin's theory of evolution and are important to the fields of evolutionary psychology, biology, and cognitive science.

Cognitive ethology is a branch of ethology concerned with the influence of conscious awareness and intention on the behaviour of an animal. Donald Griffin, a zoology professor in the United States, set up the foundations for researches in the cognitive awareness of animals within their habitats.

Evolutionary developmental psychology (EDP) is a research paradigm that applies the basic principles of evolution by natural selection, to understand the development of human behavior and cognition. It involves the study of both the genetic and environmental mechanisms that underlie the development of social and cognitive competencies, as well as the epigenetic processes that adapt these competencies to local conditions.

In evolutionary biology, function is the reason some object or process occurred in a system that evolved through natural selection. That reason is typically that it achieves some result, such as that chlorophyll helps to capture the energy of sunlight in photosynthesis. Hence, the organism that contains it is more likely to survive and reproduce, in other words the function increases the organism's fitness. A characteristic that assists in evolution is called an adaptation; other characteristics may be non-functional spandrels, though these in turn may later be co-opted by evolution to serve new functions.

Evolutionary psychology seeks to identify and understand human psychological traits that have evolved in much the same way as biological traits, through adaptation to environmental cues. Furthermore, it tends toward viewing the vast majority of psychological traits, certainly the most important ones, as the result of past adaptions, which has generated significant controversy and criticism from competing fields. These criticisms include disputes about the testability of evolutionary hypotheses, cognitive assumptions such as massive modularity, vagueness stemming from assumptions about the environment that leads to evolutionary adaptation, the importance of non-genetic and non-adaptive explanations, as well as political and ethical issues in the field itself.

Human ethology is the study of human behavior. Ethology as a discipline is generally thought of as a sub-category of biology, though psychological theories have been developed based on ethological ideas. The bridging between biological sciences and social sciences creates an understanding of human ethology. The International Society for Human Ethology is dedicated to advancing the study and understanding of human ethology.

The history of evolutionary psychology began with Charles Darwin, who said that humans have social instincts that evolved by natural selection. Darwin's work inspired later psychologists such as William James and Sigmund Freud but for most of the 20th century psychologists focused more on behaviorism and proximate explanations for human behavior. E. O. Wilson's landmark 1975 book, Sociobiology, synthesized recent theoretical advances in evolutionary theory to explain social behavior in animals, including humans. Jerome Barkow, Leda Cosmides and John Tooby popularized the term "evolutionary psychology" in their 1992 book The Adapted Mind: Evolutionary Psychology and The Generation of Culture. Like sociobiology before it, evolutionary psychology has been embroiled in controversy, but evolutionary psychologists see their field as gaining increased acceptance overall.

Evolutionary psychiatry, also known as Darwinian psychiatry, is a theoretical approach to psychiatry that aims to explain psychiatric disorders in evolutionary terms. As a branch of the field of evolutionary medicine, it is distinct from the medical practice of psychiatry in its emphasis on providing scientific explanations rather than treatments for mental disorder. This often concerns questions of ultimate causation. For example, psychiatric genetics may discover genes associated with mental disorders, but evolutionary psychiatry asks why those genes persist in the population. Other core questions in evolutionary psychiatry are why heritable mental disorders are so common how to distinguish mental function and dysfunction, and whether certain forms of suffering conveyed an adaptive advantage. Disorders commonly considered are depression, anxiety, schizophrenia, autism, eating disorders, and others. Key explanatory concepts are of evolutionary mismatch and the fact that evolution is guided by reproductive success rather than health or wellbeing. Rather than providing an alternative account of the cause of mental disorder, evolutionary psychiatry seeks to integrate findings from traditional schools of psychology and psychiatry such as social psychology, behaviourism, biological psychiatry and psychoanalysis into a holistic account related to evolutionary biology. In this sense, it aims to meet the criteria of a Kuhnian paradigm shift.

<span class="mw-page-title-main">Outline of evolution</span> Overview of and topical guide to change in the heritable characteristics of organisms

The following outline is provided as an overview of and topical guide to evolution:

Evolutionary psychology has traditionally focused on individual-level behaviors, determined by species-typical psychological adaptations. Considerable work, though, has been done on how these adaptations shape and, ultimately govern, culture. Tooby and Cosmides (1989) argued that the mind consists of many domain-specific psychological adaptations, some of which may constrain what cultural material is learned or taught. As opposed to a domain-general cultural acquisition program, where an individual passively receives culturally-transmitted material from the group, Tooby and Cosmides (1989), among others, argue that: "the psyche evolved to generate adaptive rather than repetitive behavior, and hence critically analyzes the behavior of those surrounding it in highly structured and patterned ways, to be used as a rich source of information out of which to construct a 'private culture' or individually tailored adaptive system; in consequence, this system may or may not mirror the behavior of others in any given respect.".

Inclusive fitness in humans is the application of inclusive fitness theory to human social behaviour, relationships and cooperation.

<i>Ethology</i> (journal) Peer-reviewed journal

Ethology is a monthly peer-reviewed scientific journal published by John Wiley & Sons. The journal is associated with the Ethologische Gesellschaft and the current editor-in-chief is Wolfgang Goymann. Previous editors-in-chief were Wolfgang Wickler, Michael Taborsky, and Jutta Schneider with Susan Foster.

References

  1. MacDougall-Shackleton, Scott A. (2011-07-27). "The levels of analysis revisited". Philosophical Transactions of the Royal Society B: Biological Sciences. 366 (1574): 2076–2085. doi:10.1098/rstb.2010.0363. PMC   3130367 . PMID   21690126.
  2. Daly, Martin; Wilson, Margo (1983). Sex, evolution, and behavior (2nd ed.). Boston: Willard Grant Press. ISBN   9780871507679. OCLC   9084620.
  3. 1 2 3 4 Tinbergen, Niko (1963) "On Aims and Methods in Ethology," Zeitschrift für Tierpsychologie, 20: 410–433 [411].
  4. Nikolaas Tinbergen, ethology, Cartwright 2000:10; Buss 2004:12)
  5. 1 2 3 4 Hladký, V. & Havlíček, J. (2013). Was Tinbergen an Aristotelian? Comparison of Tinbergen's Four Whys and Aristotle's Four Causes . Human Ethology Bulletin, 28(4), 3–11
  6. "Phylogeny" often emphasizes the evolutionary genealogical relationships among species (Alcock 2001:492; Mayr, 2001:289) as distinct from the categories of explanations. Although the categories are more relevant in a conceptual discussion, the traditional term is retained here.
  7. "Biased learning" is not necessarily limited to the developmental period.
  8. Bode, Adam; Kushnick, Geoff (2021). "Proximate and Ultimate Perspectives on Romantic Love". Frontiers in Psychology. 12: 573123. doi: 10.3389/fpsyg.2021.573123 . ISSN   1664-1078. PMC   8074860 . PMID   33912094.
  9. Bode, Adam; Kuula, Liisa (September 2021). "Romantic Love and Sleep Variations: Potential Proximate Mechanisms and Evolutionary Functions". Biology. 10 (9): 923. doi: 10.3390/biology10090923 . PMC   8468029 . PMID   34571801.
  10. Mapping Transdisciplinarity in Human Sciences. In: Janice W. Lee (Ed.) Focus on Gender Identity. New York, 2005, Nova Science Publishers, Inc.

Sources

Diagrams

Derivative works