Vildagliptin

Last updated
Vildagliptin
Vildagliptin.svg
Vildagliptin-3D-balls.png
Clinical data
Trade names Galvus, Zavamet others
Other namesLAF237
AHFS/Drugs.com UK Drug Information
License data
Pregnancy
category
  • Not recommended
Routes of
administration
By mouth
ATC code
Legal status
Legal status
  • UK: POM (Prescription only)
  • EU:Rx-only
  • In general: ℞ (Prescription only)
Pharmacokinetic data
Bioavailability 85%
Protein binding 9.3%
Metabolism Mainly hydrolysis to inactive metabolite; CYP450 not appreciably involved
Elimination half-life 2 to 3 hours
Excretion Kidney
Identifiers
  • (S)-1-[N-(3-Hydroxy-1-adamantyl)glycyl]pyrrolidine-2-carbonitrile
CAS Number
PubChem CID
IUPHAR/BPS
DrugBank
ChemSpider
UNII
KEGG
ChEMBL
CompTox Dashboard (EPA)
ECHA InfoCard 100.158.712 OOjs UI icon edit-ltr-progressive.svg
Chemical and physical data
Formula C17H25N3O2
Molar mass 303.406 g·mol−1
3D model (JSmol)
Solubility in water Freely Soluble in water mg/mL (20 °C)
  • N#C[C@H]4N(C(=O)CNC13CC2CC(C1)CC(O)(C2)C3)CCC4
  • InChI=1S/C17H25N3O2/c18-9-14-2-1-3-20(14)15(21)10-19-16-5-12-4-13(6-16)8-17(22,7-12)11-16/h12-14,19,22H,1-8,10-11H2/t12?,13?,14-,16?,17?/m0/s1 Yes check.svgY
  • Key:SYOKIDBDQMKNDQ-XWTIBIIYSA-N Yes check.svgY
 X mark.svgNYes check.svgY  (what is this?)    (verify)

Vildagliptin, sold under the brand name Galvus and others, is an oral anti-hyperglycemic agent (anti-diabetic drug) of the dipeptidyl peptidase-4 (DPP-4) inhibitor class of drugs. Vildagliptin inhibits the inactivation of GLP-1 [2] [3] and GIP [3] by DPP-4, allowing GLP-1 and GIP to potentiate the secretion of insulin in the beta cells and suppress glucagon release by the alpha cells of the islets of Langerhans in the pancreas.

Contents

It was approved by the EMA in 2007. [4]

Vildagliptin has been shown to reduce hyperglycemia in type 2 diabetes mellitus. [2]

Combination with metformin

The European Medicines Agency has also approved a combination of vildagliptin and metformin, vildagliptin/metformin (Eucreas by Novartis) as an oral treatment for type-2 diabetes. [5]

Adverse effects

Adverse effects observed in clinical trials include nausea, hypoglycemia, tremor, headache and dizziness. Rare cases of hepatoxicity have been reported. [6]

There have been case reports of pancreatitis associated with DPP-4 inhibitors. A group at UCLA reported increased pre-cancerous pancreatic changes in rats and in human organ donors who had been treated with DPP-4 inhibitors. [7] [8] In response to these reports, the United States FDA and the European Medicines Agency each undertook independent reviews of all clinical and preclinical data related to the possible association of DPP-4 inhibitors with pancreatic cancer. In a joint letter to the New England Journal of Medicines, the agencies stated that "Both agencies agree that assertions concerning a causal association between incretin-based drugs and pancreatitis or pancreatic cancer, as expressed recently in the scientific literature and in the media, are inconsistent with the current data. The FDA and the EMA have not reached a final conclusion at this time regarding such a causal relationship. Although the totality of the data that have been reviewed provides reassurance, pancreatitis will continue to be considered a risk associated with these drugs until more data are available; both agencies continue to investigate this safety signal." [9]

See also

Related Research Articles

Drugs used in diabetes treat diabetes mellitus by decreasing the glucose level in the blood. With the exception of insulin, most GLP receptor agonists, and pramlintide, all are administered orally and are thus also called oral hypoglycemic agents or oral antihyperglycemic agents. There are different classes of hypoglycemic drugs, and their selection depends on the nature of diabetes, age, and situation of the person, as well as other factors.

<span class="mw-page-title-main">Incretin</span> Group of gastrointestinal hormones

Incretins are a group of metabolic hormones that stimulate a decrease in blood glucose levels. Incretins are released after eating and augment the secretion of insulin released from pancreatic beta cells of the islets of Langerhans by a blood-glucose–dependent mechanism.

<span class="mw-page-title-main">Exenatide</span> Medication

Exenatide, sold under the brand name Byetta and Bydureon among others, is a medication used to treat diabetes mellitus type 2. It is used together with diet, exercise, and potentially other antidiabetic medication. It is a treatment option after metformin and sulfonylureas. It is given by injection under the skin twice daily or once weekly.

<span class="mw-page-title-main">Dipeptidyl peptidase-4 inhibitor</span> Enzyme blocker and diabetes treatment drug

Inhibitors of dipeptidyl peptidase 4 are a class of oral hypoglycemics that block the enzyme dipeptidyl peptidase-4 (DPP-4). They can be used to treat diabetes mellitus type 2.

<span class="mw-page-title-main">Sitagliptin</span> Diabetes medication

Sitagliptin, sold under the brand name Januvia among others, is an anti-diabetic medication used to treat type 2 diabetes. In the United Kingdom it is listed as less preferred than metformin or a sulfonylurea. It is taken by mouth. It is also available in the fixed-dose combination medication sitagliptin/metformin.

<span class="mw-page-title-main">Glucagon-like peptide-1</span> Gastrointestinal peptide hormone Involved in glucose homeostasis

Glucagon-like peptide-1 (GLP-1) is a 30- or 31-amino-acid-long peptide hormone deriving from the tissue-specific posttranslational processing of the proglucagon peptide. It is produced and secreted by intestinal enteroendocrine L-cells and certain neurons within the nucleus of the solitary tract in the brainstem upon food consumption. The initial product GLP-1 (1–37) is susceptible to amidation and proteolytic cleavage, which gives rise to the two truncated and equipotent biologically active forms, GLP-1 (7–36) amide and GLP-1 (7–37). Active GLP-1 protein secondary structure includes two α-helices from amino acid position 13–20 and 24–35 separated by a linker region.

<span class="mw-page-title-main">Saxagliptin</span> Chemical compound

Saxagliptin, sold under the brand name Onglyza, is an oral hypoglycemic of the dipeptidyl peptidase-4 (DPP-4) inhibitor class. Early development was solely by Bristol-Myers Squibb; in 2007 AstraZeneca joined with Bristol-Myers Squibb to co-develop the final compound and collaborate on the marketing of the drug.

<span class="mw-page-title-main">Glucagon-like peptide-1 receptor</span> Receptor activated by peptide hormone GLP-1

The glucagon-like peptide-1 receptor (GLP1R) is a G protein-coupled receptor (GPCR) found on beta cells of the pancreas and on neurons of the brain. It is involved in the control of blood sugar level by enhancing insulin secretion. In humans it is synthesised by the gene GLP1R, which is present on chromosome 6. It is a member of the glucagon receptor family of GPCRs. GLP1R is composed of two domains, one extracellular (ECD) that binds the C-terminal helix of GLP-1, and one transmembrane (TMD) domain that binds the N-terminal region of GLP-1. In the TMD domain there is a fulcrum of polar residues that regulates the biased signaling of the receptor while the transmembrane helical boundaries and extracellular surface are a trigger for biased agonism.

<span class="mw-page-title-main">Alogliptin</span> Chemical compound

Alogliptin, sold under the brand names Nesina and Vipidia,) is an oral anti-diabetic drug in the DPP-4 inhibitor (gliptin) class. Alogliptin does not decrease the risk of heart attack and stroke. Like other members of the gliptin class, it causes little or no weight gain, exhibits relatively little risk of hypoglycemia, and has relatively modest glucose-lowering activity. Alogliptin and other gliptins are commonly used in combination with metformin in people whose diabetes cannot adequately be controlled with metformin alone.

<span class="mw-page-title-main">Liraglutide</span> Anti-diabetic medication

Liraglutide, sold under the brand names Victoza and Saxenda among others, is an anti-diabetic medication used to treat type 2 diabetes, and chronic obesity. It is a second-line therapy for diabetes following first-line therapy with metformin. Its effects on long-term health outcomes like heart disease and life expectancy are unclear. It is given by injection under the skin.

<span class="mw-page-title-main">Linagliptin</span> Chemical compound

Linagliptin, sold under the brand name Tradjenta among others, is a medication used to treat type 2 diabetes in conjunction with exercise and diet. It is generally less preferred than metformin and sulfonylureas as an initial treatment. It is taken by mouth.

Dipeptidyl peptidase-4 inhibitors are enzyme inhibitors that inhibit the enzyme dipeptidyl peptidase-4 (DPP-4). They are used in the treatment of type 2 diabetes mellitus. Inhibition of the DPP-4 enzyme prolongs and enhances the activity of incretins that play an important role in insulin secretion and blood glucose control regulation. Type 2 diabetes mellitus is a chronic metabolic disease that results from inability of the β-cells in the pancreas to secrete sufficient amounts of insulin to meet the body's needs. Insulin resistance and increased hepatic glucose production can also play a role by increasing the body's demand for insulin. Current treatments, other than insulin supplementation, are sometimes not sufficient to achieve control and may cause undesirable side effects, such as weight gain and hypoglycemia. In recent years, new drugs have been developed, based on continuing research into the mechanism of insulin production and regulation of the metabolism of sugar in the body. The enzyme DPP-4 has been found to play a significant role.

Albiglutide is a glucagon-like peptide-1 agonist drug marketed by GlaxoSmithKline (GSK) for treatment of type 2 diabetes. As of 2017 it is unclear if it affects a person's risk of death. GSK has announced that it intends to withdraw the drug from the worldwide market by July 2018 for economic reasons.

Glucagon-like peptide-1 (GLP-1) receptor agonists, also known as GLP-1 analogs, GLP-1DAs or incretin mimetics, are a class of drugs that reduce blood sugar and energy intake by activating the GLP-1 receptor. They mimic the actions of the endogenous incretin hormone GLP-1 that is released by the gut after eating.

Sitagliptin/metformin, sold under the brand name Janumet among others, is a fixed-dose combination anti-diabetic medication used to treat type 2 diabetes. It may be used in those whose blood sugar is not controlled with metformin and a sulfonylurea. It is taken by mouth.

<span class="mw-page-title-main">Gemigliptin</span> Chemical compound

Gemigliptin (rINN), sold under the brand name Zemiglo, is an oral anti-hyperglycemic agent of the dipeptidyl peptidase-4 inhibitor class of drugs. Glucose lowering effects of DPP-4 inhibitors are mainly mediated by GLP-1 and gastric inhibitory polypeptide (GIP) incretin hormones which are inactivated by DPP-4.

<span class="mw-page-title-main">Dulaglutide</span> Diabetes medication

Dulaglutide, sold under the brand name Trulicity among others, is a medication used for the treatment of type 2 diabetes in combination with diet and exercise. It is also approved in the United States for the reduction of major adverse cardiovascular events in adults with type 2 diabetes who have established cardiovascular disease or multiple cardiovascular risk factors. It is a once-weekly injection.

<span class="mw-page-title-main">Daniel J. Drucker</span> Canadian endocrinologist (born 1956)

Daniel Joshua Drucker is a Canadian endocrinologist. A Fellow of the Royal Society, he is a professor of medicine at the Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto. He is known for his research into intestinal hormones and their use in the treatment of diabetes, obesity, and other metabolic diseases, as well as intestinal failure.

<span class="mw-page-title-main">Omarigliptin</span> Chemical compound

Omarigliptin (MK-3102) is a potent, long-acting oral antidiabetic drug of the DPP-4 inhibitor class used for once-weekly treatment of type 2 diabetes and currently under development by Merck & Co. It inhibits DPP-4 to increase incretin levels, which inhibit glucagon release, which in turn increases insulin secretion, decreases gastric emptying and decreases blood glucose levels.

<span class="mw-page-title-main">Gosogliptin</span> Chemical compound

Gosogliptin is a drug for the treatment of type II diabetes. It is in the class of dipeptidyl peptidase-4 (DPP-4) inhibitors. It was discovered and developed through Phase 1 and Phase 2 by Pfizer. The crystal structure of DPP-4 in complex with gosogliptin is available. Its metabolism, excretion and pharmacokinetics in rat, dog and human have been described. A cost efficient route has been published. Other studies including Phase 3 studies were conducted in Russia. It is approved for use in Russia.

References

  1. WHO International Working Group for Drug Statistics Methodology (August 27, 2008). "ATC/DDD Classification (FINAL): New ATC 5th level codes". WHO Collaborating Centre for Drug Statistics Methodology. Archived from the original on May 6, 2008. Retrieved September 5, 2008.
  2. 1 2 Ahrén B, Landin-Olsson M, Jansson PA, Svensson M, Holmes D, Schweizer A (May 2004). "Inhibition of dipeptidyl peptidase-4 reduces glycemia, sustains insulin levels, and reduces glucagon levels in type 2 diabetes". The Journal of Clinical Endocrinology and Metabolism. 89 (5): 2078–2084. doi: 10.1210/jc.2003-031907 . PMID   15126524.
  3. 1 2 Mentlein R, Gallwitz B, Schmidt WE (June 1993). "Dipeptidyl-peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-like peptide-1(7-36)amide, peptide histidine methionine and is responsible for their degradation in human serum". European Journal of Biochemistry. 214 (3): 829–835. doi: 10.1111/j.1432-1033.1993.tb17986.x . PMID   8100523.
  4. Mathieu C, Degrande E (December 2008). "Vildagliptin: a new oral treatment for type 2 diabetes mellitus". Vascular Health and Risk Management. 4 (6): 1349–1360. doi: 10.2147/vhrm.s3005 . ISSN   1176-6344. PMC   2663430 . PMID   19337548.
  5. "EU approves Novartis's Eucreas diabetes drug". Reuters. February 25, 2008.
  6. "Galvus" (PDF). www.ema.europa.eu. Retrieved July 29, 2018.
  7. Matveyenko AV, Dry S, Cox HI, Moshtaghian A, Gurlo T, Galasso R, et al. (July 2009). "Beneficial endocrine but adverse exocrine effects of sitagliptin in the human islet amyloid polypeptide transgenic rat model of type 2 diabetes: interactions with metformin". Diabetes. 58 (7): 1604–1615. doi:10.2337/db09-0058. PMC   2699878 . PMID   19403868.
  8. Butler AE, Campbell-Thompson M, Gurlo T, Dawson DW, Atkinson M, Butler PC (July 2013). "Marked expansion of exocrine and endocrine pancreas with incretin therapy in humans with increased exocrine pancreas dysplasia and the potential for glucagon-producing neuroendocrine tumors". Diabetes. 62 (7): 2595–2604. doi:10.2337/db12-1686. PMC   3712065 . PMID   23524641.
  9. Egan AG, Blind E, Dunder K, de Graeff PA, Hummer BT, Bourcier T, et al. (February 2014). "Pancreatic safety of incretin-based drugs--FDA and EMA assessment". The New England Journal of Medicine. 370 (9): 794–797. doi: 10.1056/NEJMp1314078 . PMID   24571751.