Epalrestat

Last updated
Epalrestat
Epalrestat.svg
Names
Preferred IUPAC name
{(5Z)-5-[(2E)-2-Methyl-3-phenylprop-2-en-1-ylidene]-4-oxo-2-sulfanylidene-1,3-thiazolidin-3-yl}acetic acid
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.200.343 OOjs UI icon edit-ltr-progressive.svg
KEGG
PubChem CID
UNII
  • InChI=1S/C15H13NO3S2/c1-10(7-11-5-3-2-4-6-11)8-12-14(19)16(9-13(17)18)15(20)21-12/h2-8H,9H2,1H3,(H,17,18)/b10-7+,12-8- X mark.svgN
    Key: CHNUOJQWGUIOLD-NFZZJPOKSA-N X mark.svgN
  • InChI=1/C15H13NO3S2/c1-10(7-11-5-3-2-4-6-11)8-12-14(19)16(9-13(17)18)15(20)21-12/h2-8H,9H2,1H3,(H,17,18)/b10-7+,12-8-
    Key: CHNUOJQWGUIOLD-NFZZJPOKBR
  • O=C(O)CN1C(=O)C(\SC1=S)=C/C(=C/c2ccccc2)C
Properties
C15H13NO3S2
Molar mass 319.401 g/mol
Density 1.43 g/cm3
Melting point 210 °C (410 °F; 483 K)
Boiling point 516.8 °C (962.2 °F; 789.9 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Epalrestat is a carboxylic acid derivative [1] and a noncompetitive and reversible aldose reductase inhibitor used for the treatment of diabetic neuropathy, which is one of the most common long-term complications in patients with diabetes mellitus. It reduces the accumulation of intracellular sorbitol which is believed to be the cause of diabetic neuropathy, retinopathy and nephropathy [2] [3] It is well tolerated, with the most commonly reported adverse effects being gastrointestinal issues such as nausea and vomiting, as well as increases in certain liver enzymes. [4] Chemically, epalrestat is unusual in that it is a drug that contains a rhodanine group. Aldose reductase is the key enzyme in the polyol pathway whose enhanced activity is the basis of diabetic neuropathy. Aldose reductase inhibitors (ARI) target this enzyme. Out of the many ARIs developed, ranirestat and fidarestat are in the trial stage. Others have been discarded due to unacceptable adverse effects or weak efficacy. Epalrestat is the only ARI commercially available. [5] It is easily absorbed into the neural tissue [6] and inhibits the enzyme with minimum side effects. [7]

Contents

Evidence

It has been demonstrated in animal experiments that there is an improvement in sorbitol levels and Na+/K+ ATPase activity leading to improved nerve conduction velocity. Diabetic rats treated with epalrestat showed improvement in morphological abnormalities of nerves. [8] In a placebo controlled double blind trial of 196 patients, it was shown that Epalrestat in a dose of 150 mg/day improved the effects of diabetic neuropathy like upper limb spontaneous pain, motor nerve conduction velocity, thresholds of vibratory sensation and autonomic nerve function as compared to a placebo. These effects were significantly better in those with poorer control of diabetes. [9] A systematic review and metaanalysis showed that based on the results of 10 articles, it can be concluded that Epalrestat has some benefit in the control of diabetic cardiovascular autonomic neuropathy but only in the early or mild cases. It also doesn't influence glycaemic control. [10]

Brand names

Related Research Articles

Aldose reductase inhibitors are a class of drugs being studied as a way to prevent eye and nerve damage in people with diabetes.

<span class="mw-page-title-main">Sorbitol</span> Chemical compound

Sorbitol, less commonly known as glucitol, is a sugar alcohol with a sweet taste which the human body metabolizes slowly. It can be obtained by reduction of glucose, which changes the converted aldehyde group (−CHO) to a primary alcohol group (−CH2OH). Most sorbitol is made from potato starch, but it is also found in nature, for example in apples, pears, peaches, and prunes. It is converted to fructose by sorbitol-6-phosphate 2-dehydrogenase. Sorbitol is an isomer of mannitol, another sugar alcohol; the two differ only in the orientation of the hydroxyl group on carbon 2. While similar, the two sugar alcohols have very different sources in nature, melting points, and uses.

Diabetic neuropathy is various types of nerve damage associated with diabetes mellitus. Symptoms depend on the site of nerve damage and can include motor changes such as weakness; sensory symptoms such as numbness, tingling, or pain; or autonomic changes such as urinary symptoms. These changes are thought to result from a microvascular injury involving small blood vessels that supply nerves. Relatively common conditions which may be associated with diabetic neuropathy include distal symmetric polyneuropathy; third, fourth, or sixth cranial nerve palsy; mononeuropathy; mononeuropathy multiplex; diabetic amyotrophy; and autonomic neuropathy.

<span class="mw-page-title-main">Duloxetine</span> Antidepressant medication used also for treatment of anxiety and chronic pain

Duloxetine, sold under the brand name Cymbalta among others, is a medication used to treat major depressive disorder, generalized anxiety disorder, obsessive-compulsive disorder, fibromyalgia, neuropathic pain and central sensitization. It is taken by mouth.

<span class="mw-page-title-main">Peripheral neuropathy</span> Nervous system disease affecting nerves beyond the brain and spinal cord

Peripheral neuropathy, often shortened to neuropathy, refers to damage or disease affecting the nerves. Damage to nerves may impair sensation, movement, gland function, and/or organ function depending on which nerve fibers are affected. Neuropathies affecting motor, sensory, or autonomic nerve fibers result in different symptoms. More than one type of fiber may be affected simultaneously. Peripheral neuropathy may be acute or chronic, and may be reversible or permanent.

Diabetic angiopathy is a form of angiopathy associated with diabetic complications. While not exclusive, the two most common forms are diabetic retinopathy and diabetic nephropathy, whose pathophysiologies are largely identical. Other forms of diabetic angiopathy include diabetic neuropathy and diabetic cardiomyopathy.

The polyol pathway is a two-step process that converts glucose to fructose. In this pathway glucose is reduced to sorbitol, which is subsequently oxidized to fructose. It is also called the sorbitol-aldose reductase pathway.

Alpha-glucosidase inhibitors (AGIs) are oral anti-diabetic drugs used for diabetes mellitus type 2 that work by preventing the digestion of carbohydrates. Carbohydrates are normally converted into simple sugars (monosaccharides) by alpha-glucosidase enzymes present on cells lining the intestine, enabling monosaccharides to be absorbed through the intestine. Hence, alpha-glucosidase inhibitors reduce the impact of dietary carbohydrates on blood sugar.

Small fiber peripheral neuropathy is a type of peripheral neuropathy that occurs from damage to the small unmyelinated and myelinated peripheral nerve fibers. These fibers, categorized as C fibers and small Aδ fibers, are present in skin, peripheral nerves, and organs. The role of these nerves is to innervate some skin sensations and help control autonomic function. It is estimated that 15–20 million people in the United States have some form of peripheral neuropathy.

<span class="mw-page-title-main">Aldose reductase</span> Enzyme

In enzymology, aldose reductase is a cytosolic NADPH-dependent oxidoreductase that catalyzes the reduction of a variety of aldehydes and carbonyls, including monosaccharides. It is primarily known for catalyzing the reduction of glucose to sorbitol, the first step in polyol pathway of glucose metabolism.

<span class="mw-page-title-main">Sorbitol dehydrogenase</span> Enzyme

Sorbitol dehydrogenase is a cytosolic enzyme. In humans this protein is encoded by the SORD gene.

<span class="mw-page-title-main">Ranirestat</span> Chemical compound

Ranirestat is an aldose reductase inhibitor being developed for the treatment of diabetic neuropathy by Dainippon Sumitomo Pharma and PharmaKyorin. It has been granted orphan drug status. The drug is to be used orally.

<span class="mw-page-title-main">AKR1B1</span> Protein-coding gene in the species Homo sapiens

Aldo-keto reductase family 1, member B1 (AKR1B1), also known as aldose reductase, is an enzyme that is encoded by the AKR1B1 gene in humans. It is a reduced nicotinamide-adenine dinucleotide phosphate (NADPH)-dependent enzyme catalyzing the reduction of various aldehydes and ketones to the corresponding alcohol. The involvement of AKR1B1 in oxidative stress diseases, cell signal transduction, and cell proliferation process endows AKR1B1 with potential as a therapeutic target.

<span class="mw-page-title-main">AKR1B10</span> Protein-coding gene in the species Homo sapiens

Aldo-keto reductase family 1 member B10 is an enzyme that in humans is encoded by the AKR1B10 gene.

<span class="mw-page-title-main">Diabetic cardiomyopathy</span> Medical condition

Diabetic cardiomyopathy is a disorder of the heart muscle in people with diabetes. It can lead to inability of the heart to circulate blood through the body effectively, a state known as heart failure(HF), with accumulation of fluid in the lungs or legs. Most heart failure in people with diabetes results from coronary artery disease, and diabetic cardiomyopathy is only said to exist if there is no coronary artery disease to explain the heart muscle disorder.

<span class="mw-page-title-main">Sorbinil</span> Chemical compound

Sorbinil (INN) is an aldose reductase inhibitor being investigated for treatment of diabetic complications including neuropathy and retinopathy. Aldose reductase is an enzyme present in lens and brain that removes excess glucose by converting it to sorbitol. Sorbitol accumulation can lead to the development of cataracts in the lens and neuropathy in peripheral nerves. Sorbinil has been shown to inhibit aldose reductase in human brain and placenta and calf and rat lens. Sorbinil reduced sorbitol accumulation in rat lens and sciatic nerve of diabetic rats orally administered 0.25 mg/kg sorbinil.

<span class="mw-page-title-main">Alrestatin</span> Chemical compound

Alrestatin is an inhibitor of aldose reductase, an enzyme involved in the pathogenesis of complications of diabetes mellitus, including diabetic neuropathy.

<span class="mw-page-title-main">Zenarestat</span> Chemical compound

Zenarestat is an aldose reductase inhibitor. It was investigated as a treatment of diabetic neuropathy and cataract, but its development was terminated.

<span class="mw-page-title-main">Fidarestat</span> Chemical compound

Fidarestat (SNK-860) is an aldose reductase inhibitor under investigation for treatment of diabetic neuropathy.

Electrochemical skin conductance (ESC) is an objective, non-invasive and quantitative electrophysiological measure of skin conductance through the application of a pulsating direct current on the skin. It is based on reverse iontophoresis and steady chronoamperometry. ESC is intended to provide insight into and assess sudomotor function and small fiber peripheral neuropathy. The measure was principally developed by Impeto Medical to diagnose cystic fibrosis from historical research at the Mayo Clinic and then tested on others diseases with peripheral neuropathic alterations in general. It was later integrated into health connected scales by Withings.

References

  1. Terashima, H; Hama, K (1984). "Effects of a new aldose reductase inhibitor on various tissue in vitro". J Pharmacol Exp Ther. 229 (1): 226–230. PMID   6423811.
  2. Ramirez, Mary Ann; Borja, Nancy L (May 2008). "Epalrestat: An Aldose Reductase Inhibitor for the Treatment of Diabetic Neuropathy". Pharmacotherapy. 28 (5): 646–655. doi:10.1592/phco.28.5.646. PMID   18447661. S2CID   207233270.
  3. Steele, John W.; Faulds, Diana; Goa, Karen L. (1993). "Epalrestat". Drugs & Aging. 3 (6): 532–555. doi:10.2165/00002512-199303060-00007. PMID   8312678.
  4. Ramirez, Mary Ann; Borja, Nancy L (May 2008). "Epalrestat: An Aldose Reductase Inhibitor for the Treatment of Diabetic Neuropathy". Pharmacotherapy. 28 (5): 646–655. doi:10.1592/phco.28.5.646. PMID   18447661. S2CID   207233270.
  5. Hotta, N; Akanuma, Y; Kawamori, R; Matsuoka, K; Oka, Y; Shichiri, M (July 2006). "Long-Term Clinical Effects of Epalrestat, an". Diabetes Care. 29 (7): 1538–44. doi: 10.2337/dc05-2370 . PMID   16801576 . Retrieved 16 July 2016.
  6. Terashima, H; Hama, K; Yamamoto, R; Tsuboshima, M; Kikkawa, R; Hatanaka, I (1984). "Effects of a new aldose reductase inhibitor on various tissues in vitro". J Pharmacol Exp Ther. 229 (1): 226–30. PMID   6423811.
  7. Hotta, N; Sakamoto, N; Shigeta, Y; Kikkawa, G; Goto, Y; Diabetic Neuropathy Study (1996). "Clinical investigation of epalrestat, an aldose reductase inhibitor, on diabetic neuropathy in Japan: multicenter study". J Diabetes Complications. 10 (3): 168–72. doi:10.1016/1056-8727(96)00113-4. PMID   8807467.
  8. Hotta, N; Sugimura, K; Kakuta, H; Fukasawa, H; Kimura, M; Koh, N (1988). Effects of a fructose rich diet and an aldose reductase inhibitor on the development of diabetic neuropathy in streptozotocin-treated rats. Amsterdam: Elsevier Science Publishers BV. p. 511.
  9. Goto, Y; Hotta, N; Shigeta, Y; Sakamoto, N; Kikkawa, R (1995). "Effects of an aldose reductase inhibitor, epalrestat, on diabetic neuropathy. Clinical benefit and indication for the drug assessed from the results of a placebo-controlled double-blind study". Biomed Pharmacother. 49 (6): 269–77. doi:10.1016/0753-3322(96)82642-4. PMID   7579007.
  10. Xin, Hu; Li, Shengbing; Yang, Gangyi; Liu, Hua; Boden, Guenther; Li, Ling (2014). "Efficacy and Safety of Aldose Reductase Inhibitor for the Treatment of Diabetic Cardiovascular Autonomic Neuropathy: Systematic Review and Meta-Analysis". PLOS ONE. 9 (2): e87096. Bibcode:2014PLoSO...987096H. doi: 10.1371/journal.pone.0087096 . PMC   3922720 . PMID   24533052.