Phenylcarbylamine chloride

Last updated
Phenylcarbylamine chloride
Phenylcarbylamine chloride.svg
Names
IUPAC name
Phenylcarbonimidoyl dichloride
Other names
Phenyl isocyanide dichloride, K-Stoff
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.009.760 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 210-735-0
PubChem CID
UNII
UN number 1672
  • InChI=1S/C7H5Cl2N/c8-7(9)10-6-4-2-1-3-5-6/h1-5H
    Key: TTWWZVGVBRPHLE-UHFFFAOYSA-N
  • c1ccc(cc1)N=C(Cl)Cl
Properties
C7H5Cl2N
Molar mass 174.02 g·mol−1
AppearanceOily liquid
Odor Onion-like
Melting point 19.5 °C (67.1 °F; 292.6 K)
Boiling point 210 °C (410 °F; 483 K) at 760 mmHg
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Toxic
GHS labelling:
GHS-pictogram-skull.svg GHS-pictogram-exclam.svg
Danger
H302, H315, H319, H331, H335
P261, P264, P270, P271, P280, P301+P312, P302+P352, P304+P340, P305+P351+P338, P311, P312, P321, P330, P332+P313, P337+P313, P362, P403+P233, P405, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Phenylcarbylamine chloride is a chemical compound that was used as a chemical warfare agent. It's an oily liquid with an onion-like odor. [1] Classified as an isocyanide dichloride, this compound is a lung irritant with lachrymatory effects. [2] [3]

Contents

Synthesis

Phenylcarbylamine chloride is produced by chlorination of phenyl isothiocyanate. [4]

See also

Related Research Articles

<span class="mw-page-title-main">Chlorine</span> Chemical element, symbol Cl and atomic number 17

Chlorine is a chemical element; it has symbol Cl and atomic number 17. The second-lightest of the halogens, it appears between fluorine and bromine in the periodic table and its properties are mostly intermediate between them. Chlorine is a yellow-green gas at room temperature. It is an extremely reactive element and a strong oxidising agent: among the elements, it has the highest electron affinity and the third-highest electronegativity on the revised Pauling scale, behind only oxygen and fluorine.

Nerve agents, sometimes also called nerve gases, are a class of organic chemicals that disrupt the mechanisms by which nerves transfer messages to organs. The disruption is caused by the blocking of acetylcholinesterase (AChE), an enzyme that catalyzes the breakdown of acetylcholine, a neurotransmitter. Nerve agents are irreversible acetylcholinesterase inhibitors used as poison.

<span class="mw-page-title-main">Mustard gas</span> Compound used in chemical warfare

Mustard gas or sulfur mustard is any of several chemical compounds that contain the chemical structure S(CH2CH2Cl)2. In the wider sense, compounds with the substituent S(CH2CH2X)2 and N(CH2CH2X)3 are known as sulfur mustards and nitrogen mustards, respectively, where X = Cl or Br. Such compounds are potent alkylating agents, which can interfere with several biological processes. Also known as mustard agents, this family of compounds are infamous cytotoxins and blister agents with a long history of use as chemical weapons. The name mustard gas is technically incorrect: the substances, when dispersed, are often not gases but a fine mist of liquid droplets. Sulfur mustards are viscous liquids at room temperature and have an odor resembling mustard plants, garlic, or horseradish, hence the name. When pure, they are colorless, but when used in impure forms, such as in warfare, they are usually yellow-brown. Mustard gases form blisters on exposed skin and in the lungs, often resulting in prolonged illness ending in death. The typical mustard gas is the organosulfur compound bis(2-chloroethyl) sulfide.

<span class="mw-page-title-main">Phosgene</span> Toxic gaseous compound (COCl2)

Phosgene is an organic chemical compound with the formula COCl2. It is a toxic, colorless gas; in low concentrations, its musty odor resembles that of freshly cut hay or grass. It can be thought of chemically as the double acyl chloride analog of carbonic acid, or structurally as formaldehyde with the hydrogen atoms replaced by chlorine atoms. Phosgene is a valued and important industrial building block, especially for the production of precursors of polyurethanes and polycarbonate plastics.

<span class="mw-page-title-main">Methyl isocyanate</span> Chemical compound

Methyl isocyanate (MIC) is an organic compound with the molecular formula CH3NCO. Synonyms are isocyanatomethane and methyl carbylamine. Methyl isocyanate is an intermediate chemical in the production of carbamate pesticides (such as carbaryl, carbofuran, methomyl, and aldicarb). It has also been used in the production of rubbers and adhesives. As an extremely toxic and irritating compound, it is very hazardous to human health. MIC was the principal toxicant involved in the Bhopal gas disaster, which eventually killed around 20,000 people in total as per official figures. It is also a very potent lachrymatory agent.

<span class="mw-page-title-main">Tabun (nerve agent)</span> Chemical compound

Tabun or GA is an extremely toxic synthetic organophosphorus compound. It is a clear, colorless, and tasteless liquid with a faint fruity odor. It is classified as a nerve agent because it can fatally interfere with normal functioning of the mammalian nervous system. Its production is strictly controlled and stockpiling outlawed by the Chemical Weapons Convention of 1993. Tabun is the first of the G-series nerve agents along with GB (sarin), GD (soman) and GF (cyclosarin).

Incapacitating agent is a chemical or biological agent which renders a person unable to harm themselves or others, regardless of consciousness.

<span class="mw-page-title-main">Potassium chloride</span> Ionic compound (KCl)

Potassium chloride is a metal halide salt composed of potassium and chlorine. It is odorless and has a white or colorless vitreous crystal appearance. The solid dissolves readily in water, and its solutions have a salt-like taste. Potassium chloride can be obtained from ancient dried lake deposits. KCl is used as a fertilizer, in medicine, in scientific applications, domestic water softeners, and in food processing, where it may be known as E number additive E508.

<span class="mw-page-title-main">Chemical weapons in World War I</span> Contains Chlorine, phosgene (a choking agent) and mustard gas

The use of toxic chemicals as weapons dates back thousands of years, but the first large-scale use of chemical weapons was during World War I. They were primarily used to demoralize, injure, and kill entrenched defenders, against whom the indiscriminate and generally very slow-moving or static nature of gas clouds would be most effective. The types of weapons employed ranged from disabling chemicals, such as tear gas, to lethal agents like phosgene, chlorine, and mustard gas. This chemical warfare was a major component of the first global war and first total war of the 20th century. The killing capacity of gas was limited, with about 90,000 fatalities from a total of 1.3 million casualties caused by gas attacks. Gas was unlike most other weapons of the period because it was possible to develop countermeasures, such as gas masks. In the later stages of the war, as the use of gas increased, its overall effectiveness diminished. The widespread use of these agents of chemical warfare, and wartime advances in the composition of high explosives, gave rise to an occasionally expressed view of World War I as "the chemist's war" and also the era where weapons of mass destruction were created.

<span class="mw-page-title-main">CS gas</span> Chemical compound

The compound 2-chlorobenzalmalononitrile (also called o-chlorobenzylidene malononitrile; chemical formula: C10H5ClN2), a cyanocarbon, is the defining component of tear gas commonly referred to as CS gas, which is used as a riot control agent.

<span class="mw-page-title-main">Sodium hypochlorite</span> Chemical compound (known in solution as bleach)

Sodium hypochlorite is an alkaline inorganic chemical compound with the formula NaOCl. It is commonly known in a dilute aqueous solution as bleach or chlorine bleach. It is the sodium salt of hypochlorous acid, consisting of sodium cations and hypochlorite anions.

<span class="mw-page-title-main">Phenacyl chloride</span> Chemical compound

Phenacyl chloride, also commonly known as chloroacetophenone, is a substituted acetophenone. It is a useful building block in organic chemistry. Apart from that, it has been historically used as a riot control agent, where it is designated CN. It should not be confused with cyanide, another agent used in chemical warfare, which has the chemical structure CN. Chloroacetophenone is thermally stable, and is the only tear agent that is distillable at ambient conditions.

<span class="mw-page-title-main">Diphosgene</span> Chemical compound

Diphosgene is an organic chemical compound with the formula ClCO2CCl3. This colorless liquid is a valuable reagent in the synthesis of organic compounds. Diphosgene is related to phosgene and has comparable toxicity, but is more conveniently handled because it is a liquid, whereas phosgene is a gas.

Cyanogen chloride is a highly toxic chemical compound with the formula CNCl. This linear, triatomic pseudohalogen is an easily condensed colorless gas. More commonly encountered in the laboratory is the related compound cyanogen bromide, a room-temperature solid that is widely used in biochemical analysis and preparation.

<span class="mw-page-title-main">Tear gas</span> Non-lethal chemical weapon

Tear gas, also known as a lachrymatory agent or lachrymator, sometimes colloquially known as "mace" after the early commercial self-defense spray, is a chemical weapon that stimulates the nerves of the lacrimal gland in the eye to produce tears. In addition, it can cause severe eye and respiratory pain, skin irritation, bleeding, and blindness. Common lachrymators both currently and formerly used as tear gas include pepper spray, PAVA spray (nonivamide), CS gas, CR gas, CN gas, bromoacetone, xylyl bromide and Mace.

<span class="mw-page-title-main">Nitrogen mustard</span> Family of chemical compounds

Nitrogen mustards (NMs) are cytotoxic organic compounds with the bis(2-chloroethyl)amino ((ClC2H4)2NR) functional group. Although originally produced as chemical warfare agents, they were the first chemotherapeutic agents for treatment of cancer. Nitrogen mustards are nonspecific DNA alkylating agents.

<span class="mw-page-title-main">Diphenylchlorarsine</span> Chemical compound

Diphenylchloroarsine (DA) is the organoarsenic compound with the formula (C6H5)2AsCl. It is highly toxic and was once used in chemical warfare. It is also an intermediate in the preparation of other organoarsenic compounds. The molecule consists of a pyramidal As(III) center attached to two phenyl rings and one chloride. It was also known as sneezing oil during World War I by the Allies.

<span class="mw-page-title-main">Sesquimustard</span> Chemical compound

Sesquimustard is the organosulfur compound with the formula (ClCH2CH2SCH2)2. Although it is a colorless solid, impure samples are often brown. The compound is a type of mustard gas, a vesicant used as a chemical weapon. From the chemical perspective, the compound is both a thioether and an alkyl chloride.

Chlorine gas poisoning is an illness resulting from the effects of exposure to chlorine beyond the threshold limit value.

References

  1. Handbook of chemical and biological warfare agents (2nd ed.). CRC Press. 24 August 2007. ISBN   9780849314346.
  2. Cowell, E. M. (7 October 1939). "Chemical Warfare and the Doctor--I". BMJ. 2 (4109): 736–738. doi:10.1136/bmj.2.4109.736. PMC   2177982 . PMID   20782694.
  3. Hinkson de, H (January 1920). "Medical Aspect of Gas Warfare". Journal of the National Medical Association. 12 (1): 1–6. PMC   2622123 . PMID   20891780.
  4. Sartori, Mario (1939). The War Gases (PDF).