A light curve for BE Ursae Majoris, adapted from Shimanskii et al. (2008). [1] The inset plot shows the time around the eclipse with an expanded scale. | |
Observation data Epoch J2000 Equinox J2000 | |
---|---|
Constellation | Ursa Major |
Right ascension | 11h 57m 44.828s [2] |
Declination | +48° 56′ 18.31″ [2] |
Apparent magnitude (V) | 14.8 to 17.8 [3] |
Characteristics | |
Spectral type | DO + M1e–M5e [4] |
Variable type | Detached Algol [3] |
Astrometry | |
Radial velocity (Rv) | −67±2 [5] km/s |
Proper motion (μ) | RA: 10.706 mas/yr [2] Dec.: −12.783 mas/yr [2] |
Parallax (π) | 0.7079 ± 0.0257 mas [2] |
Distance | 4,600 ± 200 ly (1,410 ± 50 pc) |
Details | |
Subdwarf O star | |
Mass | 0.59±0.07 [1] M☉ |
Radius | 0.078±0.004 [5] R☉ |
Surface gravity (log g) | 6.5±0.1 [5] cgs |
Temperature | 105,000±5,000 [5] K |
M class dwarf | |
Mass | 0.25±0.08 [1] M☉ |
Radius | 0.72±0.05 [5] R☉ |
Temperature | 4,750±150 [1] K |
Other designations | |
Database references | |
SIMBAD | data |
BE Ursae Majoris is a binary star system in the northern circumpolar constellation of Ursa Major, abbreviated BE UMa. The two components are an unusual M-class dwarf star and a subdwarf O star, borderline white dwarf. It is classified as a detached Algol variable and ranges in brightness from an apparent visual magnitude of 14.8 down to 17.8. [3] This is too faint to be visible to the naked eye. The distance to this system is approximately 4,600 light years based on parallax measurements. [2]
The variability of SVS 1424 was announced in 1964 by N. E. Kurochkin from Sternberg, [7] and was found to have a period of 2.291 days while ranging in brightness from magnitude 14.1 down to 15.6. [8] After being assigned the variable star designation BE UMa, it was discovered to be a source of hot ultraviolet emission with a helium-rich spectrum by D. H. Ferguson and associates in 1981. [9] B. Margon and associates found variability of spectral features on a time scale as low as a few hours. They interpreted this as a detached binary system consisting of a compact, high temperature white dwarf and a cool red dwarf star. The outer layers of the cooler star are being ionized by radiation from the hotter component, [10] and the changing orientation of this heated region over the course of an orbit is creating a sinusoidal variability of about 1.5 magnitudes. [11]
In 1982, a deep eclipse was discovered in the light curve by H. Ando and associates. This put a strong limit on the possible models for the system, which indicated that the compact component is a hot O-type subdwarf. [12] D. Crampton and associates in 1983 found that the temperature and radius of the cool component suggested that it is an evolved subgiant star. At present, no mass transfer is taking place, but the system appears to be evolving into a cataclysmic variable as the subdwarf cools to become a normal white dwarf. [11]
In 1995, J. Liebert and associates discovered that the system is surrounded by a planetary nebula with a diameter of 3′ , which was likely shed when the present day subdwarf was leaving the asymptotic giant branch stage. The two components would have shared a common envelope as little as 10,000 years ago. As a result, rather than being a subgiant, the cool component has not yet reached the thermal equilibrium of a late dwarf star. [13] The pair have a circular orbit with a period of 2.2911658 days and a separation of 7.5±0.5 R☉ . The orbital plane is inclined at an angle of 84°±1° to the line of sight from the Earth. [5]
Xi Ursae Majoris is a star system in the constellation of Ursa Major. It has the traditional name Alula Australis; Xi Ursae Majoris is the Bayer designation, which is Latinised from ξ Ursae Majoris and abbreviated Xi UMa or ξ UMa. It was the first visual double star for which an orbit was calculated, when it was computed by Félix Savary in 1828. It is also a variable star with a small amplitude. Xi Ursae Majoris is found in the left hind paw of the Great Bear.
44 Boötis or i Boötis is a triple star system in the constellation Boötes. It is approximately 41.6 light years from Earth.
S Antliae is a W Ursae Majoris-type eclipsing binary star in Antlia.
Y Sextantis, abbreviated as Y Sex, is a variable star system in the equatorial constellation of Sextans. The system is invisible to the naked eye with a mean apparent visual magnitude of 9.88. It is located roughly at 1,300 light years from the Sun based on parallax.
AN Ursae Majoris is a binary star system in the northern circumpolar constellation of Ursa Major. It is a variable star, with AN Ursae Majoris being the variable star designation, and ranges in brightness from 14.90 down to 20.2. Even at its peak brightness though, the system is much too faint to be visible to the naked eye. Based on parallax measurements, the system is located roughly 1,050 light years away from the Sun.
65 Ursae Majoris, abbreviated as 65 UMa, is a star system in the constellation of Ursa Major. With a combined apparent magnitude of about 6.5, it is at the limit of human eyesight and is just barely visible to the naked eye in ideal conditions. It is about 760 light years away from Earth.
SU Ursae Majoris, or SU UMa, is a close binary star in the northern circumpolar constellation of Ursa Major. It is a periodic cataclysmic variable that varies in magnitude from a peak of 10.8 down to a base of 14.96. The distance to this system, as determined from its annual parallax shift of 4.53 mas, is 719 light-years. It is moving further from the Earth with a heliocentric radial velocity of +27 km/s.
V752 Centauri is multiple star system and variable star in the constellation of Centaurus. An eclipsing binary, its apparent magnitude has a maximum of 9.10, dimming to 9.66 during primary eclipse and 9.61 during secondary eclipse. Its variability was discovered by Howard Bond in 1970. From parallax measurements by the Gaia spacecraft, the system is located at a distance of 410 light-years from Earth.
TX Ursae Majoris is an eclipsing binary star system in the northern circumpolar constellation of Ursa Major. With a combined apparent visual magnitude of 6.97, the system is too faint to be readily viewed with the naked eye. The pair orbit each other with a period of 3.063 days in a circular orbit, with their orbital plane aligned close to the line of sight from the Earth. During the primary eclipse, the net brightness decreases by 1.74 magnitudes, while the secondary eclipse results in a drop of just 0.07 magnitude. TX UMa is located at a distance of approximately 780 light years from the Sun based on parallax measurements, but is drifting closer with a mean radial velocity of −13 km/s.
UX Ursae Majoris is an Algol type binary star system in the northern circumpolar constellation of Ursa Major. It is classified as a nova-like variable star similar to DQ Herculis, although no eruptions have been reported. Since its discovery in 1933, this system has been the subject of numerous studies attempting to determine its properties. The combined apparent visual magnitude of UX UMa ranges from 12.57 down to 14.15. The system is located at a distance of approximately 952 light years from the Sun based on parallax, and is drifting further away with a radial velocity of 112 km/s.
XY Ursae Majoris is a short period binary star system in the northern circumpolar constellation of Ursa Major. It is an eclipsing binary with a baseline apparent visual magnitude of 9.50. The system is located at a distance of 221.5 light years from the Sun based on parallax measurements, but is drifting closer with a radial velocity of −10 km/s. It has a relatively high proper motion, traversing the celestial sphere at the angular rate of 0.191″·yr−1.
BZ Ursae Majoris is a dwarf nova star system in the northern circumpolar constellation of Ursa Major. It consists of a white dwarf primary in a close orbit with a red dwarf. The latter star is donating mass, which is accumulating in an accretion disk orbiting the white dwarf. The system is located at a distance of approximately 505 light years from the Sun based on parallax measurements.
RZ Leonis Minoris is a cataclysmic variable star system in the northern constellation of Leo Minor. It undergoes frequent outbursts that vary in brightness from an apparent visual magnitude of 14.4 down to 16.8. Based on parallax measurements, this system is located at a distance of approximately 2,160 light years from the Sun.
VZ Piscium is a binary star system in the equatorial constellation of Pisces. it is located at a distance of 178 light years from the Sun based on parallax measurements, and has an apparent visual magnitude of about 10.3. This is an eclipsing binary system that undergoes shallow eclipses; the brightness decreases to magnitude 10.45 during the primary eclipse, then to magnitude 10.43 with the secondary eclipse, although as a contact binary the brightness varies continuously with no period of constant maximum brightness. The system is drifting closer with a radial velocity of approximately −4 km/s, and has a net heliocentric velocity of 144.1 km/s.
SW Ursae Majoris is a cataclysmic binary star system in the northern circumpolar constellation of Ursa Major, abbreviated SW UMa. During quiescence it has an apparent visual magnitude of 16.5–17, which is too faint to be visible to the naked eye. Based on parallax measurements, it is located at a distance of approximately 526 light years from the Sun.
VV Ursae Majoris is a binary star system in the northern circumpolar constellation of Ursa Major, abbreviated VV UMa. It is a variable star system with a brightness that cycles around an apparent visual magnitude of 10.19, making it too faint to be visible to the naked eye. The system is located at a distance of approximately 1,500 light years based on parallax measurements.
AW Ursae Majoris is a binary star system in the northern circumpolar constellation of Ursa Major, abbreviated AW UMa. It is an A-type W Ursae Majoris variable with an apparent visual magnitude of 6.83, which is near the lower limit of visibility to the naked eye. This is an eclipsing binary with the brightness dropping to magnitude 7.13 during the primary eclipse and to 7.08 with the secondary eclipse. Parallax measurements give a distance estimate of 221 light years from the Sun. It is drifting closer to the Sun with a radial velocity of approximately −17 km/s. The system has a high proper motion, traversing the celestial sphere at the rate of 0.216 arc second per annum.
DM Ursae Majoris is a binary star system in the northern circumpolar constellation of Ursa Major, abbreviated DM UMa. It is sometimes identified by the Bonner Durchmusterung catalogue designation BD +61 1211; DM UMa is the variable star designation. The system has a combined apparent visual magnitude of 9.29, which is too faint to be visible to the naked eye. Based on parallax measurements, the system is located at a distance of approximately 606 light years from the Sun, but it is drifting closer with a heliocentric radial velocity of −7 km/s.
DW Ursae Majoris is an eclipsing binary star system in the northern circumpolar constellation of Ursa Major, abbreviated DW UMa. It is a cataclysmic variable of the SX Sextanis type, consisting of a compact white dwarf that is accreting matter from an orbiting companion star. The brightness of this source ranges from an apparent visual magnitude of 13.6 down to magnitude 18, which is too faint to be viewed with the naked eye. The distance to this system is approximately 1,920 light years based on parallax measurements.
ER Ursae Majoris is a variable star in the northern circumpolar constellation of Ursa Major, abbreviated ER UMa. It is a prototype system for a subclass of SU Ursae Majoris dwarf novae. The system ranges in brightness from a peak apparent visual magnitude of 12.4 down to 15.2, which is too faint to be visible to the naked eye. The distance to this system, based on parallax measurements, is approximately 1,163 light years.