Central sleep apnea

Last updated
Central sleep apnea
Other namesPrimary alveolar hypoventilation, alveolar hypoventilation secondary to neurologic disease, idiopathic acquired central hypoventilation syndrome
Specialty Neurology   OOjs UI icon edit-ltr-progressive.svg

Central sleep apnea (CSA) or central sleep apnea syndrome (CSAS) is a sleep-related disorder in which the effort to breathe is diminished or absent, typically for 10 to 30 seconds either intermittently or in cycles, and is usually associated with a reduction in blood oxygen saturation. [1] [2] CSA is usually due to an instability in the body's feedback mechanisms that control respiration. [3] Central sleep apnea can also be an indicator of Arnold–Chiari malformation. [4]

Contents

Signs and symptoms

In a healthy person during sleep, breathing is regular so oxygen levels and carbon dioxide levels in the bloodstream stay fairly constant: [5] After exhalation, the blood level of oxygen decreases and that of carbon dioxide increases. Exchange of gases with a lungful of fresh air is necessary to replenish oxygen and rid the bloodstream of built-up carbon dioxide. Oxygen and carbon dioxide receptors in the body (called chemoreceptors) send nerve impulses to the brain, which then signals for reflexive opening of the larynx (enlarging the opening between the vocal cords) and movements of the rib cage muscles and diaphragm. These muscles expand the thorax (chest cavity) so that a partial vacuum is made within the lungs and air rushes in to fill it. [6] In the absence of central apnea, any sudden drop in oxygen or excess of carbon dioxide, even if small, strongly stimulates the brain's respiratory centers to breathe; the respiratory drive is so strong that even conscious efforts to hold one's breath do not overcome it.[ citation needed ]

In pure central sleep apnea, the brain's respiratory control centers, located in the region of the human brain known as the pre-Botzinger complex, [7] [ medical citation needed ] are imbalanced during sleep and fail to give the signal to inhale, causing the individual to miss one or more cycles of breathing. The neurological feedback mechanism that monitors blood levels of carbon dioxide and in turn stimulates respiration fails to react quickly enough to maintain an even respiratory rate, allowing the entire respiratory system to cycle between apnea and hyperpnea, even for a brief time following an awakening during a breathing pause. The sleeper stops breathing for up to two minutes and then starts again. [8] There is no effort made to breathe during the pause in breathing: there are no chest movements and no muscular struggling, although when awakening occurs in the middle of a pause, the inability to immediately operate the breathing muscles often results in cognitive struggle accompanied by a feeling of panic exacerbated by the feeling associated with excessive blood CO2 levels. Even in severe cases of central sleep apnea, however, the effects almost always result in pauses that make breathing irregular rather than cause the total cessation of breathing over the medium term. After the episode of apnea, breathing may be faster and/or more intense (hyperpnea) for a period of time, a compensatory mechanism to blow off retained waste gases, absorb more oxygen, and, when voluntary, enable a return to normal instinctive breathing patterns by restoring oxygen to the breathing muscles themselves.

Secondary effects

The conditions of hypoxia and hypercapnia, whether caused by apnea or not, trigger additional effects on the body. The immediate effects of central sleep apnea on the body depend on how long the failure to breathe endures, how short is the interval between failures to breathe, and the presence or absence of independent conditions whose effects amplify those of an apneic episode.[ citation needed ]

  • In persons with epilepsy, the hypoxia caused by apnea may be powerful enough to trigger seizures even in the presence of medication that otherwise controls those seizures well.
  • In adults with coronary artery disease, a severe drop in blood oxygen level can cause angina, arrhythmias, or heart attacks (myocardial infarction).
  • Longstanding and recurrent episodes of apnea may, over months and years, have the cumulative effect of increasing blood carbon-dioxide levels to the point that enough carbon dioxide dissolves in the blood to form carbonic acid in overall proportions sufficient to cause respiratory acidosis.
  • In persons who have either or both forms of sleep apnea, breathing irregularities during sleep can be dangerously aggravated by taking respiration-depressing drugs, especially sedative drugs that operate by depressing the central nervous system generally; respiratory depressants include opiates, barbiturates, benzodiazepines, and, in large quantities, alcohol, the last three of which are broad-spectrum CNS depressants. Quantities that are normally considered safe may cause the person with chronic sleep apnea to stop breathing altogether. Should these individuals have general anaesthesia, for example, they require prolonged monitoring after initial recovery, as compared against a person with no history of sleep apnea, because apnea is likely to occur with even low levels of the drugs in their system.
  • Sudden infant death syndrome is sometimes theorized to be attributable to sleep apnea; the recommendation, prevalent since the mid-1980s, of placing infants on their backs rather than their stomachs for sleep represents an attempt to prevent those instances of breathing cessation that are attributable to compressive obstruction.
  • Premature infants with immature brains and reflex systems are at high risk for central sleep apnea syndrome, even if these babies are otherwise healthy. Premature babies who have the syndrome will generally outgrow it as they mature, provided that they receive careful enough monitoring and supportive care during infancy to survive. Because of premature infants' propensity toward central apnea, medications that can cause respiratory drive depression are either not given to them or administered to them only under careful monitoring, with equipment for resuscitation immediately available. Such precautions are routinely taken for premature infants after general anesthesia; administration of caffeine has been found not only to aid in maintenance of respiratory function after general anaesthesia but to reduce apnea for preterm infants regardless of context. [9]

Diagnosis

AHIRating
5 to <15 apneas or hypopneas per hour of sleepMild sleep apnea/hypopnea
15 to <30 apneas or hypopneas per hour of sleepModerate sleep apnea/hypopnea

A diagnosis of sleep apnea requires determination by a physician. The examination may require a study of an individual in a sleep lab, although the AAST has said a two belt IHT (In Home Test) will replace a PSG for diagnosing obstructive apnea[ citation needed ]. There, the patient will be monitored while at rest, and the periods when breathing ceases will be measured with respect to length and frequency. [6] During a PSG (polysomnography) (a sleep study), a person with sleep apnea shows breathing interruptions followed by drops/reductions in blood oxygen and increases in blood carbon dioxide level.

As noted above, in central sleep apnea, the cessation of airflow is associated with the absence of physical attempts to breathe; specifically, polysomnograms reveal correlation between absence of rib cage and abdominal movements and cessation of airflow at the nose and lips. By contrast, in obstructive sleep apnea, pauses are not correlated with the absence of attempts to breathe and may even be correlated with more effortful breathing in an instinctive attempt to overcome the pressure on the affected person's airway. If the majority of a sleep-apnea patient's apneas/hypopneas are central, their condition is classified as central; likewise, if the majority are obstructive, their condition is classified as obstructive.[ citation needed ]

Criteria

CSA is divided into 6 categories:

The following symptoms are present in primary CSA: excessive daytime sleepiness, frequent arousals and awakenings during sleep or insomnia complaints, awakening short of breath, snoring, witness apneas. [12] The patient's polysomnography shows ≥5 central apneas and/or central hypopneas per hour of sleep, representing at least 50% of total respiratory events in the apnea-hypopnea index. [12] CSA with CSB is characterized by at least one of the criteria of primary CSA or the presence of atrial fibrillation/flutter, congestive heart failure, or a neurologic disorder. [12] The patient's polysomnography looks like the primary CSA polysomnography with the addition of a ventilatory pattern compatible with CSB. [12] High-altitude periodic breathing requires that the patient has recently been at least 2500 meters above sea level. [12] In CSA due to a medication or substance, opioids or other respiratory depressants must have been taken. [12] For CSA due to a medical condition without CSB, the criteria are the same as primary CSA, but the symptoms are caused by a disease. [12] Treatment emergent CSA must appear only after treatment for obstructive respiratory events has begun. [12]

Differential diagnosis

Although central and obstructive sleep apnea have some signs and symptoms in common, others are present in one but absent in another, enabling differential diagnosis as between the two types:[ citation needed ]

Signs and symptoms of sleep apnea generally

  • Observed breathing pauses during sleep
  • High carbon-dioxide saturation of blood, especially just before awakenings during which a patient experiences urgent need to breathe (see "Symptoms" below)
  • Low oxygen saturation of blood
  • Heart rate increase (response to both hypercapnia and hypoxemia/hypoxia), unless there also exist problems with the heart muscle itself or the autonomic nervous system severe enough to make this compensatory increase impossible
  • High frequency of urgent need to breathe upon awakening (symptom created by hypercapnia), especially among subset of awakenings occurring at times other than normal for an individual's sleep schedule and circadian rhythms

Signs and symptoms of central sleep apnea

  • Lack of abdominal and thoracic movement for 10 seconds or longer during sleep and coincident with breathing pauses
  • Inability, either complete or without excessive effort, to voluntarily operate diaphragm and other thoracic muscles upon awakening
  • The combination of this symptom with a high frequency of urgent need to breathe upon awakening is especially specific in that the co-presence of the latter symptom differentiates central sleep apnea's presentation from that of sleep paralysis generally.

Signs and symptoms of and conditions associated with obstructive sleep apnea [13]

  • Observably ineffective respiratory movements (observable lack of air flow despite observable muscle movements indicating efforts to breathe)
  • Snoring (high-sensitivity but low-specificity)
  • Observably dry mouth or throat (high-sensitivity but low-specificity)
  • Sleepiness, fatigue, or tiredness, often rising to the level of excessive daytime sleepiness
  • Frequent feelings of choking (airway and/or lung compression), as distinguished from mere feeling of suffocation nonspecific with respect to presence/absence of pressure, upon awakening
  • Opioid medication use
  • Large neck circumference (>16" for females, > 17" for males) (frequent causal factor and possible indirect symptom; see "Obesity" below)
  • Obesity (frequent causal factor and possible, albeit low-specificity, sign both direct and indirect): Obesity frequently involves accumulation of fat below the chin and around the neck, depressing the trachea when one is in the supine position, and central obesity can, depending on an individual's fat distribution, lead to increased direct pressure on the thoracic cavity and/or compressive anterior (headward) displacement of the abdominal organs, in the second case reducing space for and increasing difficulty of the motion of the diaphragm. Poor breathing during sleep a] reduces oxygen available for metabolism and may therefore depress basal metabolic rate during sleep, increasing the difference between supply of food energy and demand for it during that time and thereby promoting weight gain, and b] reduces sleep quality and recovery per time unit of sleep, resulting in sleepiness or fatigue that may prompt affected people to eat more in an attempt to increase short-term energy levels.
  • Correlation with cardiac disorders:
  • Atrial fibrillation (AF): A study in the medical journal Sleep found that the prevalence of atrial fibrillation among patients with idiopathic central sleep apnea was significantly higher than the prevalence among patients with obstructive sleep apnea or no sleep apnea (27%, 1.7%, and 3.3%, respectively). The study was based on 180 subjects with 60 people in each of the 3 groups. Possible explanations for the association between CSA and AF include a causal relationship in one direction or the other between the two conditions or a common cause involving an abnormality of central cardiorespiratory regulation. [14]
  • Adults with congestive heart failure are at risk for a form of central apnea called Cheyne-Stokes respiration, which manifests itself both during sleep and during waking hours. Cheyne-Stokes respiration is characterized by periodic breathing featuring recurrent episodes of apnea alternating with episodes of rapid breathing. There is good evidence[ clarification needed ] that replacement of the failing heart (heart transplant) cures central apnea in these patients. Temporary measures (e.g., those taken pending the availability of an organ donor) include the administration of drugs whose effects include respiratory stimulation, although these drugs are not universally effective in reducing the severity of Cheyne-Stokes apneas.

Congenital central hypoventilation syndrome

Congenital central hypoventilation syndrome (CCHS), often referred to by its older name "Ondine's curse," is a rare and very severe inborn form of abnormal interruption and reduction in breathing during sleep. This condition involves a specific homeobox gene, PHOX2B, which guides maturation of the autonomic nervous system; certain loss-of-function mutations interfere with the brain's development of the ability to effectively control breathing. There may be a recognizable pattern of facial features among individuals affected by this syndrome. [15]

Once almost uniformly fatal, CCHS is now treatable. Children who have it must have tracheotomies and access to mechanical ventilation on respirators while sleeping, but most do not need to use a respirator while awake. The use of a diaphragmatic pacemaker may offer an alternative for some patients. When pacemakers have enabled some children to sleep without the use of a mechanical respirator, reported cases still required the tracheotomy to remain in place because the vocal cords did not move apart with inhalation.[ citation needed ]

Persons with the syndrome who survive to adulthood are strongly instructed to avoid certain condition-aggravating factors, such as alcohol use, which can easily prove lethal. [16]

Treatment

After a patient receives a diagnosis, the diagnosing physician can provide different options for treatment. If central sleep apnea is medication-induced (e.g., opioids), reducing the dose or eventual withdrawal of the offending medication often improves CSA.[ citation needed ]

  • Treatment for central sleep apnea differs in that the device is set not at one constant optimal pressure but rather at two different settings, one for inhalation (IPAP) and for exhalation (EPAP), maintaining normal breathing rhythm by inflating the patient's lungs at regular intervals whose specifics, such as the breathing rate and the duration of a single breath, can be programmed. Devices tailored to this purpose are known as BPAP ("bilevel positive airway pressure") devices.
  • Both CPAP and BPAP devices can be connected to a humidifier to humidify and heat the inhaled air, thus reducing unpleasant symptoms such as a sore throat or blocked nose that can result from inhaling cold, dry air.
  • CPAP and BPAP devices can trigger central apneas in those with obstructive sleep apnea requiring the use of an ASV (adaptive servo ventilation) device, which is also the proper machine for those who have central sleep apnea or mixed/complex apnea.

Epidemiology

Central sleep apnea is less prevalent than obstructive sleep apnea. In one study, CSA is stated to have a prevalence of 0.9% in comparison to OSA. [19]

There are many factors that increase the risk of developing CSA. Chronic opioid use produces a mean prevalence in central sleep apnea development of 24%. An estimate of 10% of chronic kidney disease (CKD) patients have a CSA diagnosis. Cohort studies of stroke patients show a 70% development rate of CSA within 72 hours of the stroke event, although CSA was detected in less than 17% after 3 months of follow-up. Another cohort study from the Sleep Heart Healthy study showed incidence of CSA in heart failure patients to be 0.9%. [20]

Infancy

Central sleep apnea is common in preterm, newborn, and infancy stages but a decrease in risk is found with aging and maturity of the central nervous system. Underlying neurological disorders are the most common cause of CSA in full term infants. Of the apnea related events in preterm infants born at less than 29 weeks, 25% are central in origin. [21]

Childhood

CSA is less common after 2 years of age. The prevalence of CSA in healthy children aging 10 to 18 years is 30%. Children with underlying medical conditions fall under a prevalence rate of 4-6%. For children diagnosed with Prader-Willi syndrome (PWS), CSA is more common and can occur in up to 53% of cases. [21]

Adulthood

Research shows that rates of sleep apnea are higher in adults over the age of 65 years, [20] due to older individuals having higher risks of developing CSA due to pre-existing medical conditions. Recorded prevalence in a cohort study of 2,911 men over the age of 65 was 7.5%. [19] There is reduced risk of CSA in women, and a higher incidence in men. One study showed the incidence of CSA in men was 7.8% and 0.3% in women, stating a difference in hormones have an effect on the apneic threshold (AT) for apnea. [20]

See also

Ondine's curse

Related Research Articles

<span class="mw-page-title-main">Sleep apnea</span> Disorder involving pauses in breathing during sleep

Sleep apnea is a sleep-related breathing disorder in which repetitive pauses in breathing, periods of shallow breathing, or collapse of the upper airway during sleep results in poor ventilation and sleep disruption. Each pause in breathing can last for a few seconds to a few minutes and occurs many times a night. A choking or snorting sound may occur as breathing resumes. Common symptoms include daytime sleepiness, snoring, and non restorative sleep despite adequate sleep time. Because the disorder disrupts normal sleep, those affected may experience sleepiness or feel tired during the day. It is often a chronic condition.

<span class="mw-page-title-main">Respiratory failure</span> Inadequate gas exchange by the respiratory system

Respiratory failure results from inadequate gas exchange by the respiratory system, meaning that the arterial oxygen, carbon dioxide, or both cannot be kept at normal levels. A drop in the oxygen carried in the blood is known as hypoxemia; a rise in arterial carbon dioxide levels is called hypercapnia. Respiratory failure is classified as either Type 1 or Type 2, based on whether there is a high carbon dioxide level, and can be acute or chronic. In clinical trials, the definition of respiratory failure usually includes increased respiratory rate, abnormal blood gases, and evidence of increased work of breathing. Respiratory failure causes an altered state of consciousness due to ischemia in the brain.

Apnea, BrE: apnoea, is the temporary cessation of breathing. During apnea, there is no movement of the muscles of inhalation, and the volume of the lungs initially remains unchanged. Depending on how blocked the airways are, there may or may not be a flow of gas between the lungs and the environment. If there is sufficient flow, gas exchange within the lungs and cellular respiration would not be severely affected. Voluntarily doing this is called holding one's breath. Apnea may first be diagnosed in childhood, and it is recommended to consult an ENT specialist, allergist or sleep physician to discuss symptoms when noticed; malformation and/or malfunctioning of the upper airways may be observed by an orthodontist.

<span class="mw-page-title-main">Obesity hypoventilation syndrome</span> Condition in which severely overweight people fail to breathe rapidly or deeply enough

Obesity hypoventilation syndrome (OHS) is a condition in which severely overweight people fail to breathe rapidly or deeply enough, resulting in low oxygen levels and high blood carbon dioxide (CO2) levels. The syndrome is often associated with obstructive sleep apnea (OSA), which causes periods of absent or reduced breathing in sleep, resulting in many partial awakenings during the night and sleepiness during the day. The disease puts strain on the heart, which may lead to heart failure and leg swelling.

<span class="mw-page-title-main">Positive airway pressure</span> Mechanical ventilation in which airway pressure is always above atmospheric pressure

Positive airway pressure (PAP) is a mode of respiratory ventilation used in the treatment of sleep apnea. PAP ventilation is also commonly used for those who are critically ill in hospital with respiratory failure, in newborn infants (neonates), and for the prevention and treatment of atelectasis in patients with difficulty taking deep breaths. In these patients, PAP ventilation can prevent the need for tracheal intubation, or allow earlier extubation. Sometimes patients with neuromuscular diseases use this variety of ventilation as well. CPAP is an acronym for "continuous positive airway pressure", which was developed by Dr. George Gregory and colleagues in the neonatal intensive care unit at the University of California, San Francisco. A variation of the PAP system was developed by Professor Colin Sullivan at Royal Prince Alfred Hospital in Sydney, Australia, in 1981.

<span class="mw-page-title-main">Hypercapnia</span> Abnormally high tissue carbon dioxide levels

Hypercapnia (from the Greek hyper = "above" or "too much" and kapnos = "smoke"), also known as hypercarbia and CO2 retention, is a condition of abnormally elevated carbon dioxide (CO2) levels in the blood. Carbon dioxide is a gaseous product of the body's metabolism and is normally expelled through the lungs. Carbon dioxide may accumulate in any condition that causes hypoventilation, a reduction of alveolar ventilation (the clearance of air from the small sacs of the lung where gas exchange takes place) as well as resulting from inhalation of CO2. Inability of the lungs to clear carbon dioxide, or inhalation of elevated levels of CO2, leads to respiratory acidosis. Eventually the body compensates for the raised acidity by retaining alkali in the kidneys, a process known as "metabolic compensation".

<span class="mw-page-title-main">Cheyne–Stokes respiration</span> Abnormal breathing pattern

Cheyne–Stokes respiration is an abnormal pattern of breathing characterized by progressively deeper, and sometimes faster, breathing followed by a gradual decrease that results in a temporary stop in breathing called an apnea. The pattern repeats, with each cycle usually taking 30 seconds to 2 minutes. It is an oscillation of ventilation between apnea and hyperpnea with a crescendo-diminuendo pattern, and is associated with changing serum partial pressures of oxygen and carbon dioxide.

<span class="mw-page-title-main">Respiratory arrest</span> Medical condition

Respiratory arrest is a serious medical condition caused by apnea or respiratory dysfunction severe enough that it will not sustain the body. Prolonged apnea refers to a patient who has stopped breathing for a long period of time. If the heart muscle contraction is intact, the condition is known as respiratory arrest. An abrupt stop of pulmonary gas exchange lasting for more than five minutes may permanently damage vital organs, especially the brain. Lack of oxygen to the brain causes loss of consciousness. Brain injury is likely if respiratory arrest goes untreated for more than three minutes, and death is almost certain if more than five minutes.

Upper airway resistance syndrome (UARS) is a sleep disorder characterized by the narrowing of the airway that can cause disruptions to sleep. The symptoms include unrefreshing sleep, fatigue, sleepiness, chronic insomnia, and difficulty concentrating. UARS can be diagnosed by polysomnograms capable of detecting Respiratory Effort-related Arousals. It can be treated with lifestyle changes, functional orthodontics, surgery, mandibular repositioning devices or CPAP therapy. UARS is considered a variant of sleep apnea, although some scientists and doctors believe it to be a distinct disorder.

<span class="mw-page-title-main">Polysomnography</span> Multi-parameter study of sleep and sleep disorders

Polysomnography (PSG) is a multi-parameter type of sleep study and a diagnostic tool in sleep medicine. The test result is called a polysomnogram, also abbreviated PSG. The name is derived from Greek and Latin roots: the Greek πολύς, the Latin somnus ("sleep"), and the Greek γράφειν.

<span class="mw-page-title-main">Obstructive sleep apnea</span> Sleeping and breathing disorder

Obstructive sleep apnea (OSA) is the most common sleep-related breathing disorder and is characterized by recurrent episodes of complete or partial obstruction of the upper airway leading to reduced or absent breathing during sleep. These episodes are termed "apneas" with complete or near-complete cessation of breathing, or "hypopneas" when the reduction in breathing is partial. In either case, a fall in blood oxygen saturation, a disruption in sleep, or both, may result. A high frequency of apneas or hypopneas during sleep may interfere with the quality of sleep, which – in combination with disturbances in blood oxygenation – is thought to contribute to negative consequences to health and quality of life. The terms obstructive sleep apnea syndrome (OSAS) or obstructive sleep apnea–hypopnea syndrome (OSAHS) may be used to refer to OSA when it is associated with symptoms during the daytime.

<span class="mw-page-title-main">Hypoxemia</span> Abnormally low level of oxygen in the blood

Hypoxemia is an abnormally low level of oxygen in the blood. More specifically, it is oxygen deficiency in arterial blood. Hypoxemia has many causes, and often causes hypoxia as the blood is not supplying enough oxygen to the tissues of the body.

<span class="mw-page-title-main">Supine position</span> Lying horizontally with the face and torso facing up

The supine position means lying horizontally with the face and torso facing up, as opposed to the prone position, which is face down. When used in surgical procedures, it grants access to the peritoneal, thoracic and pericardial regions; as well as the head, neck and extremities.

Hypopnea is overly shallow breathing or an abnormally low respiratory rate. Hypopnea is defined by some to be less severe than apnea, while other researchers have discovered hypopnea to have a "similar if not indistinguishable impact" on the negative outcomes of sleep breathing disorders. In sleep clinics, obstructive sleep apnea syndrome or obstructive sleep apnea–hypopnea syndrome is normally diagnosed based on the frequent presence of apneas and/or hypopneas rather than differentiating between the two phenomena. Hypopnea is typically defined by a decreased amount of air movement into the lungs and can cause oxygen levels in the blood to drop. It commonly is due to partial obstruction of the upper airway.

Apnea of prematurity is a disorder in infants who are preterm that is defined as cessation of breathing by that lasts for more than 20 seconds and/or is accompanied by hypoxia or bradycardia. Apnea of prematurity is often linked to earlier prematurity. Apnea is traditionally classified as either obstructive, central, or mixed. Obstructive apnea may occur when the infant's neck is hyperflexed or conversely, hyperextended. It may also occur due to low pharyngeal muscle tone or to inflammation of the soft tissues, which can block the flow of air though the pharynx and vocal cords. Central apnea occurs when there is a lack of respiratory effort. This may result from central nervous system immaturity, or from the effects of medications or illness. Many episodes of apnea of prematurity may start as either obstructive or central, but then involve elements of both, becoming mixed in nature.

The Apnea–Hypopnea Index or Apnoea–Hypopnoea Index (AHI) is an index used to indicate the severity of sleep apnea. It is represented by the number of apnea and hypopnea events per hour of sleep. Apnea is the complete absence of airflow through your nose and mouth. Hypoapnea is a partial collapse of your airway, limiting breathing. Apneas must last for at least 10 seconds and be associated with a decrease in blood oxygenation to be considered. Combining AHI and oxygen desaturation gives an overall sleep apnea severity score that evaluates both the number of sleep breathing disruptions and the degree of oxygen desaturation during said disruptions.

<span class="mw-page-title-main">Breathing</span> Process of moving air in and out of the lungs

Breathing is the rhythmical process of moving air into (inhalation) and out of (exhalation) the lungs to facilitate gas exchange with the internal environment, mostly to flush out carbon dioxide and bring in oxygen.

A sleep-related breathing disorder is a sleep disorder in which abnormalities in breathing occur during sleep that may or may not be present while awake. According to the International Classification of Sleep Disorders, sleep-related breathing disorders are classified as follows:

Sleep surgery is a surgery performed to treat sleep disordered breathing. Sleep disordered breathing is a spectrum of disorders that includes snoring, upper airway resistance syndrome, and obstructive sleep apnea. These surgeries are performed by surgeons trained in otolaryngology, oral maxillofacial surgery, and craniofacial surgery.

Infantile apnea is a rare disease that is characterized by cessation of breathing in an infant for at least 20 seconds or a shorter respiratory pause that is associated with a slow heart rate, bluish discolouration of the skin, extreme paleness, gagging, choking and/or decreased muscle tone. Infantile apnea occurs in children under the age of one and it is more common in premature infants. Symptoms of infantile apnea occur most frequently during the rapid eye movement (REM) stage of sleep. The nature and severity of breathing problems in patients can be detected in a sleep study called a polysomnography which measures the brain waves, heartbeat, body movements and breathing of a patient overnight. Infantile apnea can be caused by developmental problems that result in an immature brainstem or it can be caused other medical conditions. As children grow and develop, infantile apnea usually does not persist. Infantile apnea may be related to some cases of sudden infant death syndrome (SIDS) however, the relationship between infantile apnea and SIDS is not known.

References

  1. Becker, K; Wallace JM (2010-01-22). "Central Sleep Apnea". emedicine. Medscape. Retrieved 2010-07-31.
  2. AASM (2001). The International Classification of Sleep Disorders, Revised (PDF). Westchester, Illinois: American Academy of Sleep Medicine. pp. 58–61. Archived from the original (PDF) on 2011-07-26. Retrieved 2010-09-11.
  3. Becker K, Wallace JM (2010-01-22). "Central Sleep Apnea: Follow-up". emedicine. Medscape. Retrieved 2010-09-17.
  4. Watson (2009-11-09). "Sleep Disordered Breathing and Sleepiness in Patients with Chiari type I Malformation". Archived from the original on 2013-05-10. Retrieved 2014-04-17.
  5. Whittemore, Susan. "Science Online". Facts on File, Inc. Archived from the original on February 9, 2015. Retrieved December 6, 2012.
  6. 1 2 Whittemore, Susan. "How the respiratory system adjusts to meet changing oxygen demands". Facts on File, Inc. Retrieved December 11, 2012.
  7. Brownlee, C. (2005-08-13). "A Slumber Not So Sweet". Science News. Vol. 168, no. 7. p. 102. doi:10.2307/4016651. JSTOR   4016651 . Retrieved March 2, 2022.
  8. Gilliam, Marjie. "NewsBank". Cox Ohio Publishing. Retrieved December 6, 2012.
  9. Henderson-Smart DJ, Steer P (2001). Haughton D (ed.). "Prophylactic caffeine to prevent postoperative apnea following general anesthesia in preterm infants". The Cochrane Database of Systematic Reviews. 2013 (4): CD000048. doi:10.1002/14651858.CD000048. PMC   7052743 . PMID   11687065.
  10. Ruehland WR, Rochford PD, O'Donoghue FJ, Pierce RJ, Singh P, Thornton AT (February 2009). "The new AASM criteria for scoring hypopneas: impact on the apnea hypopnea index". Sleep. 32 (2): 150–7. doi:10.1093/sleep/32.2.150. PMC   2635578 . PMID   19238801.
  11. Macrea, Madalina; Katz, Eliot S.; Malhotra, Atul (2017-01-01), Kryger, Meir; Roth, Thomas; Dement, William C. (eds.), "Chapter 109 - Central Sleep Apnea: Definitions, Pathophysiology, Genetics, and Epidemiology", Principles and Practice of Sleep Medicine (Sixth Edition), Elsevier, pp. 1049–1058.e5, doi:10.1016/b978-0-323-24288-2.00109-4, ISBN   978-0-323-24288-2 , retrieved 2023-02-09
  12. 1 2 3 4 5 6 7 8 American Academy of Sleep Medicine (2014). International Classification of Sleep Disorders, 3rd edition. Darien, IL: American Academy of Sleep Medicine
  13. Fiely, Dennis (January 12, 2005). "BREATHING {AND SLEEPING} EASIER - Apnea considered dangerous, debilitating but treatable". The Columbus Dispatch. Retrieved December 7, 2012.
  14. Leung RS, Huber MA, Rogge T, Maimon N, Chiu KL, Bradley TD (December 2005). "Association between atrial fibrillation and central sleep apnea" (PDF). Sleep. 28 (12): 1543–6. doi: 10.1093/sleep/28.12.1543 . PMID   16408413. Archived from the original (PDF) on 2011-07-23. Retrieved 2010-07-16.
  15. Todd ES, Weinberg SM, Berry-Kravis EM, Silvestri JM, Kenny AS, Rand CM, Zhou L, Maher BS, Marazita ML, Weese-Mayer DE (January 2006). "Facial phenotype in children and young adults with PHOX2B-determined congenital central hypoventilation syndrome: quantitative pattern of dysmorphology". Pediatric Research. 59 (1): 39–45. doi: 10.1203/01.pdr.0000191814.73340.1d . PMID   16327002.
  16. Chen ML, Turkel SB, Jacobson JR, Keens TG (March 2006). "Alcohol use in congenital central hypoventilation syndrome". Pediatric Pulmonology. 41 (3): 283–5. doi:10.1002/ppul.20366. PMID   16429433. S2CID   24950172.
  17. Health, Center for Devices and Radiological. "Recently-Approved Devices - remedē® System – P160039". www.fda.gov. Retrieved 2018-07-11.
  18. Costanzo MR, Khayat R, Ponikowski P, Augostini R, Stellbrink C, Mianulli M, Abraham WT (January 2015). "Mechanisms and clinical consequences of untreated central sleep apnea in heart failure". Journal of the American College of Cardiology. 65 (1): 72–84. doi:10.1016/j.jacc.2014.10.025. PMC   4391015 . PMID   25572513.
  19. 1 2 Donovan, Lucas; Kapur, Vishesh (2016). "Prevalence and Characteristics of Central Compared to Obstructive Sleep Apnea: Analyses from the Sleep Heart Health Study Cohort". Sleep. 39 (7): 1353–1359. doi:10.5665/sleep.5962. PMC   4909617 . PMID   27166235.
  20. 1 2 3 Ishikawa, Oki; Margarita, Oks (2021). "Central Sleep Apnea". Clin Geriatr Med. 37 (3): 469–481. doi:10.1016/j.cger.2021.04.009. PMID   34210451. S2CID   235709082 via Clinical Key.
  21. 1 2 McLaren, Anya; Bin-Hasan, Saadoun; Narang, Indra (2019). "Diagnosis, management and pathophysiology of central sleep apnea in children". Paediatric Respiratory Reviews. 30: 49–57. doi:10.1016/j.prrv.2018.07.005. PMID   30170958. S2CID   52140389 via Clinical Key.

Further reading