Collagen loss

Last updated
collagen loss
Collagen fibrils in rabbit skin.jpg
The D-period of collagen fibrils results in visible 67nm bands when observed by electron microscopy.
Biological system Systemic
HealthCollagen loss can contribute to skin aging, joint pain, weakened hair and nails, reduced bone density, gastrointestinal issues, and reduced muscle mass.
ActionInvoluntary
FrequencyLifetime

Collagen loss is the gradual decrease of levels of collagen in the body. Collagen is the main structural protein found in the body's various connective tissues (skin, bones, tendons, etc.) where it contributes to much of their strength and elasticity.

Contents

Collagen loss occurs naturally as a part of aging, but can also be influenced by environmental factors such as exposure to ultraviolet light, tobacco, and excessive intake of sugar. Collagen loss is highly visible in the skin where it can cause the skin to lose elasticity, reduction of the thickness of the epidermis, an increase in the formation of wrinkles and sagging and also make the skin vulnerable and easily damaged. [1]

Aging skin is characterized by wrinkles, loss of skin flexibility, laxity, and having a rough appearance in the skin texture. Wrinkles - Nasr Rahman.jpg
Aging skin is characterized by wrinkles, loss of skin flexibility, laxity, and having a rough appearance in the skin texture.

Prevalent throughout the body, loss of collagen can also contribute to numerous other disorders such as joint pain, weakened hair and nails, reduced bone density, gastrointestinal issues, and reduced muscle mass. Numerous interventions exist to address the loss of collagen with varying levels of efficacy and evidentiary support.

Collagen

Collagen is the main structural protein in the extracellular matrix found in the body's various connective tissues. It is a rigid, non-soluble, fibrous protein that adds up to one-third of the proteins in the human body. Collagen is mostly made up of molecules packed together to form long and thin fibrils that support each other and ensure the skin is strong and elastic. [2] Various types of collagens have individual roles and structures. Most collagen belongs to types 1, 2, and 3. Collagen consists mainly of amino acids and can be mostly found in tendons, muscles, bones, skin, ligaments, and other fibrous tissues. It helps keep the skin strong and supple and sustains the renewal of skin cells and the replacement of damaged and dead body cells. [3] Collagen tissues provide support for the formation of bones, tendons, and cartilage, which depends on their level of mineralization.

Molecular mechanisms in skin aging

Many dissimilar models have been used to explain skin aging on a molecular basis, such as the theory of cellular senescence, the reduction of the cells' DNA repair capacity, the loss of telomeres, oxidative stress, etc. It is believed that external factors cause a large portion of skin aging, while only 3% is caused by hereditary genetic influences. [4] The following sections discuss prominent models and advancements in molecular mechanism studies related to skin aging. [1]

Oxidative stress

Oxidative stress results from the lack of balance between the systemic production of reactive oxygen species (ROS) and the biological system's capacity to detoxify them or repair the resulting damage. It is known that reactive oxygen species take part in dermal changes taking place outside the cells in both aging caused by internal factors and those caused by external factors. ROS can be created within many dissimilar sources, which include the mitochondria, endoplasmic reticulum and peroxisomes. In normal conditions the binding of ligands to receptor tyrosine kinases (RTKs) activates them, while the various actions of RTKs on the cells' surface are repressed by receptor protein tyrosine phosphatases.[ irrelevant citation ] [5]

DNA damage

Exposure to ultraviolet rays damages DNA, which may disrupt the function of the genes that play a role in the skin stem cells' homeostasis. Mutations in DNA from frequent exposure to UV radiation may result in aging prematurely or carcinogenesis. [3] When DNA absorbs photons in the UV-B range the nucleotide arrangement structurally changes which leads to the DNA strands having defects. In the lesser species, they can repair the damage to the DNA using the photolyase enzyme, but higher species do not have this enzyme. In human cells, repair can be achieved through the nucleotide excision repair pathway; when the associated proteins are deficient, the skin becomes susceptible to premature aging. [6]

Telomere shortening

Telomeres are nucleoid sequences that repeat themselves and cap chromosomes. They protect chromosomes from dilapidation and recombination abnormalities. Their length decreases with every division of the cell and results in cellular senescence. They are critical structures at the end of the eukaryotic chromosomes, consisting of many copies of G rich repeats. Without telomeres, chromosomes will combine and cause instability in the genes. The enzyme that increases telomere length to prevent them from becoming short is called telomerase. [7] Deficiency of this enzyme can hasten telomere shortening which can cause a flawed regeneration of the tissue. This also suppresses the production of epidermal cells. Also, exposure to UV radiation causes mutations to telomeres and sufficient exposure can result in the deaths of cells. [8]

"Inflammaging"

"Inflammaging" refers a chronic, sterile, low-grade inflammation that develops with advanced age. It affects the start and progression of diseases that occur due to aging, e.g., type 2 diabetes. It occurs in the skin because when exposed to UV radiation, it damages the epidermal cells, which in turn causes inflammation to occur.

Increase in age

When an individual ages, the outermost layer of skin becomes thin despite the number of cell layers remaining unchanged. The number of cells that contain pigment decreases, and the melanocytes that remain increase in size. [3] This is why aging skin looks thin, pale, and translucent. Large spots may be pigmented when some areas are exposed to sunlight. The various alterations in the skin and underlying connective tissue may decrease its strength and elasticity. Also, the blood vessels in the outer skin become more delicate and can result in bruises and bleeding under the skin's surface. [8] The subcutaneous glands also excrete decreased amounts of oil as you age. Men experience this shortage mostly after reaching the age of 80 years. Women may slowly begin excreting less oil after menopause, making it difficult to keep the skin moist. The subcutaneous fat layer also decreases, reducing the insulation and padding capability of the skin. This can put the individual at risk of an injury and makes maintaining body temperature difficult. The sweat glands also reduce the amount of sweat they produce, making the individual's body harder to cool. [9]

Lifestyle habits

Excessive sugar intake

Too much sugar intake can negatively impact the body, including damage to collagen. Excess sugar consumption results in glycation that produces AGEs. This occurs naturally, and when too much sugar is consumed, the AGE molecules stick to the collagen molecules turning them stiff, thus damaging them. [10] The process of glycation does not only damage the collagen existing in the body but also makes some alterations to its stability. When an individual consumes excessive amounts of sugar, the glycation process converts collagen into an unstable type 1, which becomes more vulnerable and can be easily broken down, potentially leading to premature aging. [11]

Tobacco usage

The use of tobacco can cause damage to the skin's collagen layer. It can cause the skin around the lips to lose collagen when in contact with the smoke or due to puckering of the lips around the cigarette. It may also cause blood vessels to constrict and reduce blood flow. Due to this, perioral collagen (connective tissue around the mouth below the skin) may show signs of damage. When collagen is lost in large amounts, it may cause wrinkles to emerge. Tobacco use can also result in slow collagen healing. [12]

Treatment for collagen loss

There are various ways in which an individual can treat the loss of collagen. Dietary changes may increase the turnover of cells and increase the creation of collagen. One can also adopt exercises that stimulate the production of collagen and also increase their intake of vitamin D.[ citation needed ] Moreover, applying an adequate amount of sunscreen can prevent UV rays from the sun from causing damage to your skin. You can also protect yourself from some of the causatives that break down collagen. Avoid spending too much time in the sun, apply sunblock, avoid smoking tobacco, drink plenty of water to prevent dehydration, and participate in stress-relieving activities. Stress is known to cause skin aging. [6]

Various other interventions can aid in preserving healthy, youthful skin. Taking vitamins C and A can provide a boost to collagen production in the body. To maintain healthy skin, individuals can nurture and protect the collagen present in their bodies by consuming nutritious foods rich in the necessary vitamins, minerals, and amino acids. This promotes collagen production and reduces cellular damage within the body. [5]

Related Research Articles

<span class="mw-page-title-main">Telomere</span> Region of repetitive nucleotide sequences on chromosomes

A telomere is a region of repetitive nucleotide sequences associated with specialized proteins at the ends of linear chromosomes. Telomeres are a widespread genetic feature most commonly found in eukaryotes. In most, if not all species possessing them, they protect the terminal regions of chromosomal DNA from progressive degradation and ensure the integrity of linear chromosomes by preventing DNA repair systems from mistaking the very ends of the DNA strand for a double-strand break.

Senescence or biological aging is the gradual deterioration of functional characteristics in living organisms. The word senescence can refer to either cellular senescence or to senescence of the whole organism. Organismal senescence involves an increase in death rates and/or a decrease in fecundity with increasing age, at least in the later part of an organism's life cycle. However, the resulting effects of senescence can be delayed. The 1934 discovery that calorie restriction can extend lifespans by 50% in rats, the existence of species having negligible senescence, and the existence of potentially immortal organisms such as members of the genus Hydra have motivated research into delaying senescence and thus age-related diseases. Rare human mutations can cause accelerated aging diseases.

<span class="mw-page-title-main">Telomerase</span> Telomere-restoring protein active in the most rapidly dividing cells

Telomerase, also called terminal transferase, is a ribonucleoprotein that adds a species-dependent telomere repeat sequence to the 3' end of telomeres. A telomere is a region of repetitive sequences at each end of the chromosomes of most eukaryotes. Telomeres protect the end of the chromosome from DNA damage or from fusion with neighbouring chromosomes. The fruit fly Drosophila melanogaster lacks telomerase, but instead uses retrotransposons to maintain telomeres.

<span class="mw-page-title-main">Werner syndrome</span> Medical condition

Werner syndrome (WS) or Werner's syndrome, also known as "adult progeria", is a rare, autosomal recessive disorder which is characterized by the appearance of premature aging.

The free radical theory of aging states that organisms age because cells accumulate free radical damage over time. A free radical is any atom or molecule that has a single unpaired electron in an outer shell. While a few free radicals such as melanin are not chemically reactive, most biologically relevant free radicals are highly reactive. For most biological structures, free radical damage is closely associated with oxidative damage. Antioxidants are reducing agents, and limit oxidative damage to biological structures by passivating them from free radicals.

A wrinkle, also known as a rhytid, is a fold, ridge or crease in an otherwise smooth surface, such as on skin or fabric. Skin wrinkles typically appear as a result of ageing processes such as glycation, habitual sleeping positions, loss of body mass, sun damage, or temporarily, as the result of prolonged immersion in water. Age wrinkling in the skin is promoted by habitual facial expressions, aging, sun damage, smoking, poor hydration, and various other factors. In humans, it can also be prevented to some degree by avoiding excessive solar exposure and through diet.

<span class="mw-page-title-main">DNA repair</span> Cellular mechanism

DNA repair is a collection of processes by which a cell identifies and corrects damage to the DNA molecules that encodes its genome. In human cells, both normal metabolic activities and environmental factors such as radiation can cause DNA damage, resulting in tens of thousands of individual molecular lesions per cell per day. Many of these lesions cause structural damage to the DNA molecule and can alter or eliminate the cell's ability to transcribe the gene that the affected DNA encodes. Other lesions induce potentially harmful mutations in the cell's genome, which affect the survival of its daughter cells after it undergoes mitosis. As a consequence, the DNA repair process is constantly active as it responds to damage in the DNA structure. When normal repair processes fail, and when cellular apoptosis does not occur, irreparable DNA damage may occur. This can eventually lead to malignant tumors, or cancer as per the two-hit hypothesis.

<span class="mw-page-title-main">Fibrosis</span> Excess connective tissue in healing

Fibrosis, also known as fibrotic scarring, is a pathological wound healing in which connective tissue replaces normal parenchymal tissue to the extent that it goes unchecked, leading to considerable tissue remodelling and the formation of permanent scar tissue.

<span class="mw-page-title-main">Xeroderma pigmentosum</span> Medical condition

Xeroderma pigmentosum (XP) is a genetic disorder in which there is a decreased ability to repair DNA damage such as that caused by ultraviolet (UV) light. Symptoms may include a severe sunburn after only a few minutes in the sun, freckling in sun-exposed areas, dry skin and changes in skin pigmentation. Nervous system problems, such as hearing loss, poor coordination, loss of intellectual function and seizures, may also occur. Complications include a high risk of skin cancer, with about half having skin cancer by age 10 without preventative efforts, and cataracts. There may be a higher risk of other cancers such as brain cancers.

Glycation is the covalent attachment of a sugar to a protein, lipid or nucleic acid molecule. Typical sugars that participate in glycation are glucose, fructose, and their derivatives. Glycation is the non-enzymatic process responsible for many complications in diabetes mellitus and is implicated in some diseases and in aging. Glycation end products are believed to play a causative role in the vascular complications of diabetes mellitus.

The polyol pathway is a two-step process that converts glucose to fructose. In this pathway glucose is reduced to sorbitol, which is subsequently oxidized to fructose. It is also called the sorbitol-aldose reductase pathway.

Enquiry into the evolution of ageing, or aging, aims to explain why a detrimental process such as ageing would evolve, and why there is so much variability in the lifespans of organisms. The classical theories of evolution suggest that environmental factors, such as predation, accidents, disease, and/or starvation, ensure that most organisms living in natural settings will not live until old age, and so there will be very little pressure to conserve genetic changes that increase longevity. Natural selection will instead strongly favor genes which ensure early maturation and rapid reproduction, and the selection for genetic traits which promote molecular and cellular self-maintenance will decline with age for most organisms.

<span class="mw-page-title-main">Human skin</span> Organ covering the outside of the human body

The human skin is the outer covering of the body and is the largest organ of the integumentary system. The skin has up to seven layers of ectodermal tissue guarding muscles, bones, ligaments and internal organs. Human skin is similar to most of the other mammals' skin, and it is very similar to pig skin. Though nearly all human skin is covered with hair follicles, it can appear hairless. There are two general types of skin, hairy and glabrous skin (hairless). The adjective cutaneous literally means "of the skin".

<span class="mw-page-title-main">Cellular senescence</span> Phenomenon characterized by the cessation of cell division

Cellular senescence is a phenomenon characterized by the cessation of cell division. In their experiments during the early 1960s, Leonard Hayflick and Paul Moorhead found that normal human fetal fibroblasts in culture reach a maximum of approximately 50 cell population doublings before becoming senescent. This process is known as "replicative senescence", or the Hayflick limit. Hayflick's discovery of mortal cells paved the path for the discovery and understanding of cellular aging molecular pathways. Cellular senescence can be initiated by a wide variety of stress inducing factors. These stress factors include both environmental and internal damaging events, abnormal cellular growth, oxidative stress, autophagy factors, among many other things.

<span class="mw-page-title-main">Antagonistic pleiotropy hypothesis</span> Proposed evolutionary explanation for senescence

The antagonistic pleiotropy hypothesis was first proposed by George C. Williams in 1957 as an evolutionary explanation for senescence. Pleiotropy is the phenomenon where one gene controls more than one phenotypic trait in an organism. A gene is considered to possess antagonistic pleiotropy if it controls more than one trait, where at least one of these traits is beneficial to the organism's fitness early on in life and at least one is detrimental to the organism's fitness later on due to a decline in the force of natural selection. The theme of G. C. William's idea about antagonistic pleiotropy was that if a gene caused both increased reproduction in early life and aging in later life, then senescence would be adaptive in evolution. For example, one study suggests that since follicular depletion in human females causes both more regular cycles in early life and loss of fertility later in life through menopause, it can be selected for by having its early benefits outweigh its late costs.

<span class="mw-page-title-main">Photoaging</span> Ultraviolet light-induced biological development over time

Photoaging or photoageing is a term used for the characteristic changes to skin induced by chronic UVA and UVB exposure. Tretinoin is the best studied retinoid in the treatment of photoaging.

The stem cell theory of aging postulates that the aging process is the result of the inability of various types of stem cells to continue to replenish the tissues of an organism with functional differentiated cells capable of maintaining that tissue's original function. Damage and error accumulation in genetic material is always a problem for systems regardless of the age. The number of stem cells in young people is very much higher than older people and thus creates a better and more efficient replacement mechanism in the young contrary to the old. In other words, aging is not a matter of the increase in damage, but a matter of failure to replace it due to a decreased number of stem cells. Stem cells decrease in number and tend to lose the ability to differentiate into progenies or lymphoid lineages and myeloid lineages.

Telomere-binding proteins function to bind telomeric DNA in various species. In particular, telomere-binding protein refers to TTAGGG repeat binding factor-1 (TERF1) and TTAGGG repeat binding factor-2 (TERF2). Telomere sequences in humans are composed of TTAGGG sequences which provide protection and replication of chromosome ends to prevent degradation. Telomere-binding proteins can generate a T-loop to protect chromosome ends. TRFs are double-stranded proteins which are known to induce bending, looping, and pairing of DNA which aids in the formation of T-loops. They directly bind to TTAGGG repeat sequence in the DNA. There are also subtelomeric regions present for regulation. However, in humans, there are six subunits forming a complex known as shelterin.

<span class="mw-page-title-main">The Hallmarks of Cancer</span> 2000 paper by Hanahan and Weinberg

The hallmarks of cancer were originally six biological capabilities acquired during the multistep development of human tumors and have since been increased to eight capabilities and two enabling capabilities. The idea was coined by Douglas Hanahan and Robert Weinberg in their paper "The Hallmarks of Cancer" published January 2000 in Cell.

Aging is characterized by a progressive loss of physiological integrity, leading to impaired function and increased vulnerability to death. The hallmarks of aging are the types of biochemical changes that occur in all organisms that experience biological aging and lead to a progressive loss of physiological integrity, impaired function and, eventually, death. They were first listed in a landmark paper in 2013 to conceptualize the essence of biological aging and its underlying mechanisms.

References

  1. 1 2 Oliver RF, Barker H, Cooke A, Grant RA (January 1982). "Dermal collagen implants". Biomaterials. 3 (1): 38–40. doi:10.1016/0142-9612(82)90059-X. PMID   7066465.
  2. Tsutsumi A, Sugiyama T, Matsumura R, Sueishi M, Takabayashi K, Koike T, et al. (March 1991). "Protein-losing enteropathy associated with collagen diseases". Annals of the Rheumatic Diseases. 50 (3): 178–81. doi:10.1136/ard.50.3.178. PMC   1004370 . PMID   2015012.
  3. 1 2 3 Pastor-Pareja JC, Xu T (August 2011). "Shaping cells and organs in Drosophila by opposing roles of fat body-secreted Collagen IV and perlecan". Developmental Cell. 21 (2): 245–56. doi:10.1016/j.devcel.2011.06.026. PMC   4153364 . PMID   21839919.
  4. Poljšak, Borut; Dahmane, Raja G.; Godić, Aleksandar (2012). "Intrinsic skin aging: the role of oxidative stress". Acta Dermatovenerologica Alpina, Pannonica, et Adriatica. 21 (2): 33–36. PMID   23000938 . Retrieved 9 September 2023.
  5. 1 2 Li Y, Lei D, Swindell WR, Xia W, Weng S, Fu J, et al. (September 2015). "Age-Associated Increase in Skin Fibroblast-Derived Prostaglandin E2 Contributes to Reduced Collagen Levels in Elderly Human Skin". The Journal of Investigative Dermatology. 135 (9): 2181–2188. doi:10.1038/jid.2015.157. PMC   4537382 . PMID   25905589.
  6. 1 2 Hui W, Young DA, Rowan AD, Xu X, Cawston TE, Proctor CJ (February 2016). "Oxidative changes and signaling pathways are pivotal in initiating age-related changes in articular cartilage". Annals of the Rheumatic Diseases. 75 (2): 449–58. doi:10.1136/annrheumdis-2014-206295. PMC   4752670 . PMID   25475114.
  7. Kim HK, Kim MG, Leem KH (December 2013). "Osteogenic activity of collagen peptide via ERK/MAPK pathway mediated boosting of collagen synthesis and its therapeutic efficacy in osteoporotic bone by back-scattered electron imaging and microarchitecture analysis". Molecules. 18 (12): 15474–89. doi: 10.3390/molecules181215474 . PMC   6269989 . PMID   24352008.
  8. 1 2 Gautieri A, Passini FS, Silván U, Guizar-Sicairos M, Carimati G, Volpi P, et al. (May 2017). "Advanced glycation end-products: Mechanics of aged collagen from molecule to tissue". Matrix Biology. 59: 95–108. doi: 10.1016/j.matbio.2016.09.001 . hdl: 11311/1009184 . PMID   27616134.
  9. Cassidy JJ, Hiltner A, Baer E (May 1991). "Hierarchical structure and mechanical properties of collagen in the intervertebral disc". Annals of Biomedical Engineering. 19 (3): 331. doi:10.1007/BF02584309. S2CID   31720520.
  10. Trindade R, Albrektsson T, Tengvall P, Wennerberg A (February 2016). "Foreign Body Reaction to Biomaterials: On Mechanisms for Buildup and Breakdown of Osseointegration". Clinical Implant Dentistry and Related Research. 18 (1): 192–203. doi:10.1111/cid.12274. PMID   25257971.
  11. Vitellaro-Zuccarello L, Cappelletti S, Dal Pozzo Rossi V, Sari-Gorla M (February 1994). "Stereological analysis of collagen and elastic fibers in the normal human dermis: variability with age, sex, and body region". The Anatomical Record. 238 (2): 153–62. doi:10.1002/ar.1092380202. PMID   8154602. S2CID   25679704.
  12. Tezze C, Romanello V, Desbats MA, Fadini GP, Albiero M, Favaro G, et al. (June 2017). "Age-Associated Loss of OPA1 in Muscle Impacts Muscle Mass, Metabolic Homeostasis, Systemic Inflammation, and Epithelial Senescence". Cell Metabolism. 25 (6): 1374–1389.e6. doi:10.1016/j.cmet.2017.04.021. PMC   5462533 . PMID   28552492.