Coumermycin A1

Last updated
Coumermycin A1
Coumermycin A1.svg
Clinical data
Other namesCoumamycin
ATC code
  • none
Identifiers
  • 3-methyl-1H-pyrrole-2,4-diyl)bis[carbonylimino(4-hydroxy-8-methyl-2-oxo-2H-chromene-3,7-diyl)oxy(2R,3R,4S,5R)-3-hydroxy-5-methoxy-6,6-dimethyltetrahydro-2H-pyran-2,4-diyl] bis(5-methyl-1H-pyrrole-2-carboxylate
CAS Number
PubChem CID
ChemSpider
UNII
ChEBI
ChEMBL
ECHA InfoCard 100.164.703 OOjs UI icon edit-ltr-progressive.svg
Chemical and physical data
Formula C55H59N5O20
Molar mass 1110.092 g·mol−1
3D model (JSmol)
  • CO[C@@H]1[C@H](OC(=O)c2ccc(C)[nH]2)[C@@H](O)[C@H](Oc2ccc3c(O)c(NC(=O)c4c[nH]c(C(=O)Nc5c(=O)oc6c(C)c(ccc6c5O)O[C@@H]5OC(C)(C)[C@H](OC)[C@H](OC(=O)c6ccc(C)[nH]6)[C@H]5O)c4C)c(=O)oc3c2C)OC1(C)C
  • InChI=1S/C55H59N5O20/c1-21-12-16-29(57-21)48(67)77-42-38(63)52(79-54(6,7)44(42)71-10)73-31-18-14-26-36(61)34(50(69)75-40(26)24(31)4)59-46(65)28-20-56-33(23(28)3)47(66)60-35-37(62)27-15-19-32(25(5)41(27)76-51(35)70)74-53-39(64)43(45(72-11)55(8,9)80-53)78-49(68)30-17-13-22(2)58-30/h12-20,38-39,42-45,52-53,56-58,61-64H,1-11H3,(H,59,65)(H,60,66)/t38-,39-,42+,43+,44-,45-,52-,53-/m1/s1 X mark.svgN
  • Key:WTIJXIZOODAMJT-DHFGXMAYSA-N X mark.svgN
 X mark.svgNYes check.svgY  (what is this?)    (verify)

Coumermycin A1 is an aminocoumarin. [1] [2] Its main target is the ATPase site of the DNA gyrase GyrB subunit. [3]

See also

Related Research Articles

DNA topoisomerases are enzymes that catalyze changes in the topological state of DNA, interconverting relaxed and supercoiled forms, linked (catenated) and unlinked species, and knotted and unknotted DNA. Topological issues in DNA arise due to the intertwined nature of its double-helical structure, which, for example, can lead to overwinding of the DNA duplex during DNA replication and transcription. If left unchanged, this torsion would eventually stop the DNA or RNA polymerases involved in these processes from continuing along the DNA helix. A second topological challenge results from the linking or tangling of DNA during replication. Left unresolved, links between replicated DNA will impede cell division. The DNA topoisomerases prevent and correct these types of topological problems. They do this by binding to DNA and cutting the sugar-phosphate backbone of either one or both of the DNA strands. This transient break allows the DNA to be untangled or unwound, and, at the end of these processes, the DNA backbone is resealed. Since the overall chemical composition and connectivity of the DNA do not change, the DNA substrate and product are chemical isomers, differing only in their topology.

<span class="mw-page-title-main">Neomycin</span> Type of antibiotic

Neomycin is an aminoglycoside antibiotic that displays bactericidal activity against gram-negative aerobic bacilli and some anaerobic bacilli where resistance has not yet arisen. It is generally not effective against gram-positive bacilli and anaerobic gram-negative bacilli. Neomycin comes in oral and topical formulations, including creams, ointments, and eyedrops. Neomycin belongs to the aminoglycoside class of antibiotics that contain two or more amino sugars connected by glycosidic bonds.

DNA gyrase, or simply gyrase, is an enzyme within the class of topoisomerase and is a subclass of Type II topoisomerases that reduces topological strain in an ATP dependent manner while double-stranded DNA is being unwound by elongating RNA-polymerase or by helicase in front of the progressing replication fork. It is the only known enzyme to actively contribute negative supercoiling to DNA, while it also is capable of relaxing positive supercoils. It does so by looping the template to form a crossing, then cutting one of the double helices and passing the other through it before releasing the break, changing the linking number by two in each enzymatic step. This process occurs in bacteria, whose single circular DNA is cut by DNA gyrase and the two ends are then twisted around each other to form supercoils. Gyrase is also found in eukaryotic plastids: it has been found in the apicoplast of the malarial parasite Plasmodium falciparum and in chloroplasts of several plants. Bacterial DNA gyrase is the target of many antibiotics, including nalidixic acid, novobiocin, albicidin, and ciprofloxacin.

<span class="mw-page-title-main">Teicoplanin</span> Pharmaceutical drug

Teicoplanin is an semisynthetic glycopeptide antibiotic with a spectrum of activity similar to vancomycin. Its mechanism of action is to inhibit bacterial cell wall peptidoglycan synthesis. It is used in the prophylaxis and treatment of serious infections caused by Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus and Enterococcus faecalis.

In organic chemistry, polyketides are a class of natural products derived from a precursor molecule consisting of a chain of alternating ketone and methylene groups: [−C(=O)−CH2−]n. First studied in the early 20th century, discovery, biosynthesis, and application of polyketides has evolved. It is a large and diverse group of secondary metabolites caused by its complex biosynthesis which resembles that of fatty acid synthesis. Because of this diversity, polyketides can have various medicinal, agricultural, and industrial applications. Many polyketides are medicinal or exhibit acute toxicity. Biotechnology has enabled discovery of more naturally-occurring polyketides and evolution of new polyketides with novel or improved bioactivity.

<span class="mw-page-title-main">Nalidixic acid</span> First of the synthetic quinolone antibiotics

Nalidixic acid is the first of the synthetic quinolone antibiotics.

<span class="mw-page-title-main">Novobiocin</span> Chemical compound

Novobiocin, also known as albamycin or cathomycin, is an aminocoumarin antibiotic that is produced by the actinomycete Streptomyces niveus, which has recently been identified as a subjective synonym for S. spheroides a member of the class Actinomycetia. Other aminocoumarin antibiotics include clorobiocin and coumermycin A1. Novobiocin was first reported in the mid-1950s.

Topoisomerase inhibitors are chemical compounds that block the action of topoisomerases, which are broken into two broad subtypes: type I topoisomerases (TopI) and type II topoisomerases (TopII). Topoisomerase plays important roles in cellular reproduction and DNA organization, as they mediate the cleavage of single and double stranded DNA to relax supercoils, untangle catenanes, and condense chromosomes in eukaryotic cells. Topoisomerase inhibitors influence these essential cellular processes. Some topoisomerase inhibitors prevent topoisomerases from performing DNA strand breaks while others, deemed topoisomerase poisons, associate with topoisomerase-DNA complexes and prevent the re-ligation step of the topoisomerase mechanism. These topoisomerase-DNA-inhibitor complexes are cytotoxic agents, as the un-repaired single- and double stranded DNA breaks they cause can lead to apoptosis and cell death. Because of this ability to induce apoptosis, topoisomerase inhibitors have gained interest as therapeutics against infectious and cancerous cells.

<span class="mw-page-title-main">Aminocoumarin</span> Class of antibiotic chemical compounds

Aminocoumarin is a class of antibiotics that act by an inhibition of the DNA gyrase enzyme involved in the cell division in bacteria. They are derived from Streptomyces species, whose best-known representative – Streptomyces coelicolor – was completely sequenced in 2002. The aminocoumarin antibiotics include:

In enzymology, glutamate racemase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Flumequine</span> Chemical compound

Flumequine is a synthetic fluoroquinolone antibiotic used to treat bacterial infections. It is a first-generation fluoroquinolone antibacterial that has been removed from clinical use and is no longer being marketed. The marketing authorization of flumequine has been suspended throughout the EU. It kills bacteria by interfering with the enzymes that cause DNA to unwind and duplicate. Flumequine was used in veterinarian medicine for the treatment of enteric infections, as well as to treat cattle, swine, chickens, and fish, but only in a limited number of countries. It was occasionally used in France to treat urinary tract infections under the trade name Apurone. However this was a limited indication because only minimal serum levels were achieved.

<span class="mw-page-title-main">Ramoplanin</span> Antibiotic chemical

Ramoplanin (INN) is a glycolipodepsipeptide antibiotic drug derived from strain ATCC 33076 of Actinoplanes. It is effective against Gram-positive bacteria.

<span class="mw-page-title-main">Clorobiocin</span> Chemical compound

Clorobiocin is an aminocoumarin antibacterial that inhibits the enzyme DNA gyrase.

<span class="mw-page-title-main">Enediyne</span> Any organic compound containing one double and two triple bonds

Enediynes are organic compounds containing two triple bonds and one double bond.

<span class="mw-page-title-main">Quinolone antibiotic</span> Class of antibacterial drugs, subgroup of quinolones

Quinolone antibiotics constitute a large group of broad-spectrum bacteriocidals that share a bicyclic core structure related to the substance 4-quinolone. They are used in human and veterinary medicine to treat bacterial infections, as well as in animal husbandry, specifically poultry production.

Radical SAMenzymes is a superfamily of enzymes that use a [4Fe-4S]+ cluster to reductively cleave S-adenosyl-L-methionine (SAM) to generate a radical, usually a 5′-deoxyadenosyl radical (5'-dAdo), as a critical intermediate. These enzymes utilize this radical intermediate to perform diverse transformations, often to functionalize unactivated C-H bonds. Radical SAM enzymes are involved in cofactor biosynthesis, enzyme activation, peptide modification, post-transcriptional and post-translational modifications, metalloprotein cluster formation, tRNA modification, lipid metabolism, biosynthesis of antibiotics and natural products etc. The vast majority of known radical SAM enzymes belong to the radical SAM superfamily, and have a cysteine-rich motif that matches or resembles CxxxCxxC. Radical SAM enzymes comprise the largest superfamily of metal-containing enzymes.

<span class="mw-page-title-main">CcdA/CcdB Type II Toxin-antitoxin system</span>

The CcdA/CcdB Type II Toxin-antitoxin system is one example of the bacterial toxin-antitoxin (TA) systems that encode two proteins, one a potent inhibitor of cell proliferation (toxin) and the other its specific antidote (antitoxin). These systems preferentially guarantee growth of plasmid-carrying daughter cells in a bacterial population by killing newborn bacteria that have not inherited a plasmid copy at cell division.

Streptomyces rishiriensis is a bacterium species from the genus of Streptomyces which has been isolated from soil in Hokkaido in Japan. Streptomyces rishiriensis produces coumermycin A1, notomycin, 2-chloroadenosine, phosphophenylalanarginine and lactonamycin.

<span class="mw-page-title-main">C-1027</span> Chemical compound

C-1027 or lidamycin is an antitumor antibiotic consisting of a complex of an enediyne chromophore and an apoprotein. It shows antibiotic activity against most Gram-positive bacteria. It is one of the most potent cytotoxic molecules known, due to its induction of a higher ratio of DNA double-strand breaks than single-strand breaks.

<span class="mw-page-title-main">Zoliflodacin</span> Chemical compound

Zoliflodacin is an experimental antibiotic that is being studied for the treatment of infection with Neisseria gonorrhoeae (gonorrhea). It has a novel mechanism of action which involves inhibition of bacterial type II topoisomerases. Zoliflodacin is being developed by Innoviva Specialty Therapeutics, and the drug has demonstrated clinical efficacy equivalent to ceftriaxone in Phase III clinical trials.

References

  1. Heide L (2009). "Genetic engineering of antibiotic biosynthesis for the generation of new aminocoumarins". Biotechnology Advances. 27 (6): 1006–1014. doi:10.1016/j.biotechadv.2009.05.017. PMID   19463934.
  2. Heide L, Gust B, Anderle C, Li SM (2008). "Combinatorial biosynthesis, metabolic engineering and mutasynthesis for the generation of new aminocoumarin antibiotics". Current Topics in Medicinal Chemistry. 8 (8): 667–79. doi:10.2174/156802608784221505. PMID   18473891.
  3. Vanden Broeck A, McEwen AG, Chebaro Y, Potier N, Lamour V (April 2019). "Structural Basis for DNA Gyrase Interaction with Coumermycin A1". Journal of Medicinal Chemistry. 62 (8): 4225–4231. doi: 10.1021/acs.jmedchem.8b01928 . PMID   30920824.