Cyclic GMP-AMP synthase

Last updated
CGAS complexed with dsDNA.png
cGAS complexed with dsDNA (based on PDB 4O6A)
Identifiers
EC no. 2.7.7.86
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Search
PMC articles
PubMed articles
NCBI proteins
cGAS dimer, human 5v8j.jpg
cGAS dimer, human
cGAS-cGAMP-STING pathway CGAS-cGAMP-STING pathway.jpg
cGAS-cGAMP-STING pathway

Cyclic GMP-AMP synthase (cGAS, cGAMP synthase), belonging to the nucleotidyltransferase family, is a cytosolic DNA sensor that activates a type-I interferon response. It is part of the cGAS-STING DNA sensing pathway. It binds to microbial DNA as well as self DNA that invades the cytoplasm, and catalyzes cGAMP synthesis. [1] cGAMP then functions as a second messenger that binds to and activates the endoplasmic reticulum protein STING to trigger type-I IFNs production. [2] [3] [4] Mice lacking cGAS are more vulnerable to lethal infection by DNA viruses and RNA viruses. [5] [6] In addition, cGAS has been shown to be an innate immune sensor of retroviruses including HIV. [7] [8] The human gene encoding cGAS is MB21D1 on chromosome 6.

Related Research Articles

<span class="mw-page-title-main">Phosphodiesterase inhibitor</span> Drug

A phosphodiesterase inhibitor is a drug that blocks one or more of the five subtypes of the enzyme phosphodiesterase (PDE), thereby preventing the inactivation of the intracellular second messengers, cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) by the respective PDE subtype(s). The ubiquitous presence of this enzyme means that non-specific inhibitors have a wide range of actions, the actions in the heart, and lungs being some of the first to find a therapeutic use.

<span class="mw-page-title-main">Cyclic nucleotide</span> Cyclic nucleic acid

A cyclic nucleotide (cNMP) is a single-phosphate nucleotide with a cyclic bond arrangement between the sugar and phosphate groups. Like other nucleotides, cyclic nucleotides are composed of three functional groups: a sugar, a nitrogenous base, and a single phosphate group. As can be seen in the cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) images, the 'cyclic' portion consists of two bonds between the phosphate group and the 3' and 5' hydroxyl groups of the sugar, very often a ribose.

<span class="mw-page-title-main">Phosphodiesterase</span> Class of enzymes

A phosphodiesterase (PDE) is an enzyme that breaks a phosphodiester bond. Usually, phosphodiesterase refers to cyclic nucleotide phosphodiesterases, which have great clinical significance and are described below. However, there are many other families of phosphodiesterases, including phospholipases C and D, autotaxin, sphingomyelin phosphodiesterase, DNases, RNases, and restriction endonucleases, as well as numerous less-well-characterized small-molecule phosphodiesterases.

<span class="mw-page-title-main">Endogenous retrovirus</span> Inherited retrovirus encoded in an organisms genome

Endogenous retroviruses (ERVs) are endogenous viral elements in the genome that closely resemble and can be derived from retroviruses. They are abundant in the genomes of jawed vertebrates, and they comprise up to 5–8% of the human genome.

<span class="mw-page-title-main">Phosphodiesterase 3</span> Class of enzymes

PDE3 is a phosphodiesterase. The PDEs belong to at least eleven related gene families, which are different in their primary structure, substrate affinity, responses to effectors, and regulation mechanism. Most of the PDE families are composed of more than one gene. PDE3 is clinically significant because of its role in regulating heart muscle, vascular smooth muscle and platelet aggregation. PDE3 inhibitors have been developed as pharmaceuticals, but their use is limited by arrhythmic effects and they can increase mortality in some applications.

<span class="mw-page-title-main">IRF3</span> Protein-coding gene in the species Homo sapiens

Interferon regulatory factor 3, also known as IRF3, is an interferon regulatory factor.

<span class="mw-page-title-main">IBMX</span> Chemical compound

IBMX (3-isobutyl-1-methylxanthine), like other methylated xanthine derivatives, is both a:

  1. competitive non-selective phosphodiesterase inhibitor which raises intracellular cAMP, activates PKA, inhibits TNFα and leukotriene synthesis, and reduces inflammation and innate immunity, and
  2. nonselective adenosine receptor antagonist.
<span class="mw-page-title-main">RIG-I</span> Mammalian protein found in humans

RIG-I is a cytosolic pattern recognition receptor (PRR) that can mediate induction of a type-I interferon (IFN1) response. RIG-I is an essential molecule in the innate immune system for recognizing cells that have been infected with a virus. These viruses can include West Nile virus, Japanese Encephalitis virus, influenza A, Sendai virus, flavivirus, and coronaviruses.

<span class="mw-page-title-main">Mitochondrial antiviral-signaling protein</span> Protein-coding gene in the species Homo sapiens

Mitochondrial antiviral-signaling protein (MAVS) is a protein that is essential for antiviral innate immunity. MAVS is located in the outer membrane of the mitochondria, peroxisomes, and mitochondrial-associated endoplasmic reticulum membrane (MAM). Upon viral infection, a group of cytosolic proteins will detect the presence of the virus and bind to MAVS, thereby activating MAVS. The activation of MAVS leads the virally infected cell to secrete cytokines. This induces an immune response which kills the host's virally infected cells, resulting in clearance of the virus.

<span class="mw-page-title-main">PDE2A</span> Protein-coding gene in the species Homo sapiens

cGMP-dependent 3',5'-cyclic phosphodiesterase is an enzyme that in humans is encoded by the PDE2A gene.

<span class="mw-page-title-main">Cyclic di-GMP</span> Chemical compound

Cyclic di-GMP is a second messenger used in signal transduction in a wide variety of bacteria. Cyclic di-GMP is not known to be used by archaea, and has only been observed in eukaryotes in Dictyostelium. The biological role of cyclic di-GMP was first uncovered when it was identified as an allosteric activator of a cellulose synthase found in Gluconacetobacter xylinus in order to produce microbial cellulose.

<span class="mw-page-title-main">Inflammasome</span> Cytosolic multiprotein complex that mediates the activation of Caspase 1

Inflammasomes are cytosolic multiprotein oligomers of the innate immune system responsible for the activation of inflammatory responses. Activation and assembly of the inflammasome promotes proteolytic cleavage, maturation and secretion of pro-inflammatory cytokines interleukin 1β (IL-1β) and interleukin 18 (IL-18), as well as cleavage of gasdermin D. The N-terminal fragment resulting from this cleavage induces a pro-inflammatory form of programmed cell death distinct from apoptosis, referred to as pyroptosis, and is responsible for secretion of the mature cytokines, presumably through the formation of pores in the plasma membrane. Additionally, inflammasomes can be incorporated into larger cell death-inducing complexes called PANoptosomes, which drive another distinct form of pro-inflammatory cell death called PANoptosis.

Zhijian "James" Chen is a Chinese-American biochemist and professor in the department of molecular biology at University of Texas Southwestern Medical Center. He is best known for his discovery of mechanisms by which nucleic acids trigger innate and autoimmune responses from the interior of a cell, work for which he received the 2019 Breakthrough Prize in Life Sciences.

<span class="mw-page-title-main">Cyclic guanosine monophosphate–adenosine monophosphate</span> Chemical compound

Cyclic guanosine monophosphate–adenosine monophosphate is the first cyclic di-nucleotide found in metazoa. In mammalian cells, cGAMP is synthesized by cyclic GMP-AMP synthase (cGAS) from ATP and GTP upon cytosolic DNA stimulation. cGAMP produced by cGAS contains mixed phosphodiester linkages, with one between 2'-OH of GMP and 5'-phosphate of AMP and the other between 3'-OH of AMP and 5'-phosphate of GMP.

<span class="mw-page-title-main">Stimulator of interferon genes</span> Protein-coding gene in the species Homo sapiens

Stimulator of interferon genes (STING), also known as transmembrane protein 173 (TMEM173) and MPYS/MITA/ERIS is a protein that in humans is encoded by the STING1 gene.

<span class="mw-page-title-main">Gunther Hartmann</span> German immunologist and clinical pharmacologist

Gunther Hartmann is a German immunologist and clinical pharmacologist. Since 2007 he has been the Director of the Institute of Clinical Chemistry and Clinical Pharmacology at the University Hospital of the University of Bonn.

<span class="mw-page-title-main">Cyclic di-AMP</span> Chemical compound

Cyclic di-AMP is a second messenger used in signal transduction in bacteria and archaea. It is present in many Gram-positive bacteria, some Gram-negative species, and archaea of the phylum euryarchaeota.

The cGAS–STING pathway is a component of the innate immune system that functions to detect the presence of cytosolic DNA and, in response, trigger expression of inflammatory genes that can lead to senescence or to the activation of defense mechanisms. DNA is normally found in the nucleus of the cell. Localization of DNA to the cytosol is associated with tumorigenesis, viral infection, and invasion by some intracellular bacteria. The cGAS – STING pathway acts to detect cytosolic DNA and induce an immune response.

<span class="mw-page-title-main">Leucine-rich repeat receptor like protein kinase</span>

Leucine-rich repeat receptor like protein kinase are plant cell membrane localized Leucine-rich repeat (LRR) receptor kinase that play critical roles in plant innate immunity. Plants have evolved intricate immunity mechanism to combat against pathogen infection by recognizing Pathogen Associated Molecular Patterns (PAMP) and endogenous Damage Associated Molecular Patterns (DAMP). PEPR 1 considered as the first known DAMP receptor of Arabidopsis.

Jonathan C. Kagan is an American immunologist and the Marian R. Neutra, Ph.D. Professor of Pediatrics at Harvard Medical School. He is also the director of Basic Research and Shwachman Chair in Gastroenterology at Boston Children's Hospital. Kagan is a world leader in defining the molecular basis of innate immunity and inflammation.

References

  1. Sun L, Wu J, Du F, Chen X, Chen ZJ (February 2013). "Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway". Science. 339 (6121): 786–91. Bibcode:2013Sci...339..786S. doi:10.1126/science.1232458. PMC   3863629 . PMID   23258413.
  2. Wu J, Sun L, Chen X, Du F, Shi H, Chen C, Chen ZJ (February 2013). "Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA". Science. 339 (6121): 826–30. Bibcode:2013Sci...339..826W. doi:10.1126/science.1229963. PMC   3855410 . PMID   23258412.
  3. Gao P, Ascano M, Wu Y, Barchet W, Gaffney BL, Zillinger T, et al. (May 2013). "Cyclic [G(2',5')pA(3',5')p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase". Cell. 153 (5): 1094–107. doi:10.1016/j.cell.2013.04.046. PMC   4382009 . PMID   23647843.
  4. Zhang X, Shi H, Wu J, Zhang X, Sun L, Chen C, Chen ZJ (July 2013). "Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING". Molecular Cell. 51 (2): 226–35. doi:10.1016/j.molcel.2013.05.022. PMC   3808999 . PMID   23747010.
  5. Li XD, Wu J, Gao D, Wang H, Sun L, Chen ZJ (September 2013). "Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects". Science. 341 (6152): 1390–4. Bibcode:2013Sci...341.1390L. doi:10.1126/science.1244040. PMC   3863637 . PMID   23989956.
  6. Yu P, Miao Z, Li Y, Bansal R, Peppelenbosch MP, Pan Q (January 2021). "cGAS-STING effectively restricts murine norovirus infection but antagonizes the antiviral action of N-terminus of RIG-I in mouse macrophages". Gut Microbes. 13 (1): 1959839. doi:10.1080/19490976.2021.1959839. PMC   8344765 . PMID   34347572.
  7. Gao D, Wu J, Wu YT, Du F, Aroh C, Yan N, et al. (August 2013). "Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses". Science. 341 (6148): 903–6. Bibcode:2013Sci...341..903G. doi:10.1126/science.1240933. PMC   3860819 . PMID   23929945.
  8. Lahaye X, Satoh T, Gentili M, Cerboni S, Conrad C, Hurbain I, et al. (December 2013). "The capsids of HIV-1 and HIV-2 determine immune detection of the viral cDNA by the innate sensor cGAS in dendritic cells". Immunity. 39 (6): 1132–42. doi: 10.1016/j.immuni.2013.11.002 . PMID   24269171.