DNA annotation

Last updated
A visualization of Porphyra umbilicalis chloroplast genome annotation (GenBank accession: MF385003.1) made with Chloroplot. The number of genes, the genome length, and the GC content are placed in the middle black circle. The outer gray circle shows GC content in the every section of the genome. All individual genes are placed on the outermost circle according to their position in the genome, their transcription direction and their length; they are color-coded based on the cellular function or component they are part of. Represented with arrows, the transcription directions for the inner and outer genes are listed clockwise and anticlockwise, respectively. Porphyra umbilicalis chloroplast genome visualized with Chloroplot.png
A visualization of Porphyra umbilicalis chloroplast genome annotation (GenBank accession: MF385003.1) made with Chloroplot. The number of genes, the genome length, and the GC content are placed in the middle black circle. The outer gray circle shows GC content in the every section of the genome. All individual genes are placed on the outermost circle according to their position in the genome, their transcription direction and their length; they are color-coded based on the cellular function or component they are part of. Represented with arrows, the transcription directions for the inner and outer genes are listed clockwise and anticlockwise, respectively.

In molecular biology and genetics, DNA annotation or genome annotation is the process of describing the structure and function of the components of a genome, [2] by analyzing and interpreting them in order to extract their biological significance and understand the biological processes in which they participate. [3] Among other things, it identifies the locations of genes and all the coding regions in a genome and determines what those genes do. [4]

Contents

Annotation is performed after a genome is sequenced and assembled, and is a necessary step in genome analysis before the sequence is deposited in a database and described in a published article. Although describing individual genes and their products or functions is sufficient to consider this description as an annotation, the depth of analysis reported in literature for different genomes vary widely, with some reports including additional information that goes beyond a simple annotation. [5] Furthermore, due to the size and complexity of sequenced genomes, DNA annotation is not performed manually, but is instead automated by computational means. However, the conclusions drawn from the obtained results require manual expert analysis. [6]

DNA annotation is classified into two categories: structural annotation, which identifies and demarcates elements in a genome, and functional annotation, which assigns functions to these elements. [7] This is not the only way in which it has been categorized, as several alternatives, such as dimension-based [8] and level-based classifications, [3] have also been proposed.

History

The first generation of genome annotators used local ab initio methods, which are based solely on the information that can be extracted from the DNA sequence on a local scale, that is, one open reading frame (ORF) at a time. [9] [10] They appeared as a necessity to handle the enormous amount of data produced by the Maxam-Gilbert and Sanger DNA sequencing techniques developed in the late 1970s. The first software used to analyze sequencing reads is the Staden Package, created by Rodger Staden in 1977. [11] It performed several tasks related to annotation, such as base and codon counts. In fact, codon usage was the main strategy used by several early protein coding sequence (CDS) prediction methods, [12] [13] [14] based on the assumption that the most translated regions in a genome contain codons with the most abundant corresponding tRNAs (the molecules responsible for carrying amino acids to the ribosome during protein synthesis) allowing a more efficient translation. [15] This was also known to be the case for synonymous codons, which are often present in proteins expressed at a lower level. [13] [16]

The advent of complete genomes in the 1990s (the first one being the genome of Haemophilus influenzae sequenced in 1995) introduced a second generation of annotators. Just like in the previous generation, they performed annotation through ab initio methods, but now applied on a genome-wide scale. [9] [10] Markov models are the driving force behind many algorithms used within annotators of this generation; [17] [18] these models can be thought of as directed graphs where nodes represent different genomic signals (such as transcription and translation start sites) connected by arrows representing the scanning of the sequence. To ensure a Markov model detects a genomic signal, it must first be trained on a series of known genomic signals. [19] The output of Markov models in the context of annotation includes the probabilities of every kind of genomic element in every single part of the genome, and an accurate Markov model will assign high probabilities to correct annotations and low probabilities to the incorrect ones. [20]

A release timeline of genome annotators. The dotted boxes indicate the four different generations of genome annotators and their most representative characteristics. First generation (blue) where annotators used ab initio methods at a local scale, second generation (red) with genome-wide ab initio methods, third generation (green) characterized by a combination of ab initio methods and homology-based annotations, and the fourth generation (orange) in which an approach to identification of the non-coding regions of DNA and study at the population level represented by the pangenome begun. Genome Annotation Timeline.svg
A release timeline of genome annotators. The dotted boxes indicate the four different generations of genome annotators and their most representative characteristics. First generation (blue) where annotators used ab initio methods at a local scale, second generation (red) with genome-wide ab initio methods, third generation (green) characterized by a combination of ab initio methods and homology-based annotations, and the fourth generation (orange) in which an approach to identification of the non-coding regions of DNA and study at the population level represented by the pangenome begun.

As more sequenced genomes began to be available in early and mid 2000s, coupled with the numerous protein sequences that were obtained experimentally, genome annotators began employing homology based methods, launching the third generation of genome annotation. These new methods allowed annotators not only to infer genomic elements through statistical means (as in previous generations) but could also perform their task by comparing the sequence being annotated with other already existing and validated sequences. These so-called combiner annotators, which perform both ab initio and homology-based annotation, require fast alignment algorithms to identify regions of homology. [2] [9] [10]

In the late 2000s, genome annotation shifted its attention towards identifying non-coding regions in DNA, which was achieved thanks to the appearance of methods to analyze transcription factor binding sites, DNA methylation sites, chromatin structure, and other RNA and regulatory region analysis techniques. Other genome annotators also began to focus on population-level studies represented by the pangenome; by doing so, for instance, annotation pipelines ensure that core genes of a clade are also found in new genomes of the same clade. Both annotation strategies constitute the fourth generation of genome annotators. [9] [10]

By the 2010s, the genome sequences of more than a thousand-human individuals (through the 1000 Genomes Project) and several model organisms became available. As such, genome annotation remains a major challenge for scientists investigating the human and other genomes. [21] [22]

Structural annotation

Generalized flowchart of a structural genome annotation pipeline. First, the repetitive regions of an assembled genome are masked by using a repeat library. Then, optionally, the masked sequence is aligned with all the available evidence (ESTs, RNAs, and proteins) of the organism being annotated. In eukaryotic genomes, splice sites must be identified. Finally, the coding and noncoding sequences contained in the genome are predicted with the help of databases of known DNA, RNA and protein sequences, as well as other supporting information. Structural Annotation Flowchart.svg
Generalized flowchart of a structural genome annotation pipeline. First, the repetitive regions of an assembled genome are masked by using a repeat library. Then, optionally, the masked sequence is aligned with all the available evidence (ESTs, RNAs, and proteins) of the organism being annotated. In eukaryotic genomes, splice sites must be identified. Finally, the coding and noncoding sequences contained in the genome are predicted with the help of databases of known DNA, RNA and protein sequences, as well as other supporting information.

Structural annotation describes the precise location of the different elements in a genome, such as open reading frames (ORFs), coding sequences (CDS), exons, introns, repeats, splice sites, regulatory motifs, start and stop codons, and promoters. [6] [23] The main steps of structural annotation are:

  1. Repeat identification and masking.
  2. Evidence alignment (optional).
  3. Splice identification (only in eukaryotes).
  4. Feature prediction (coding and noncoding sequences).

Repeat identification and masking

The first step of structural annotation consists in the identification and masking of repeats, which include low-complexity sequences (such as AGAGAGAG, or monopolymeric segments like TTTTTTTTT), and transposons (which are larger elements with several copies across the genome). [2] [24] Repeats are a major component of both prokaryotic and eukaryotic genomes; for instance, between 0% and over 42% of prokaryotic genomes consist of repeats [25] and three quarters of the human genome are composed of repetitive elements. [26]

Identifying repeats is difficult for two main reasons: they are poorly conserved, and their boundaries are not clearly-defined. Because of this, repeat libraries must be built for the genome of interest, which can be accomplished with one of the following methods: [24] [27]

After the repetitive regions in a genome have been identified, they are masked. Masking means replacing the letters of the nucleotides (A, C, G, or T) with other letters. By doing so, these regions will be marked as repetitive and downstream analyses will treat them accordingly. Repetitive regions may produce performance issues if they are not masked, and may even produce false evidence for gene annotation (for example, treating an open reading frame (ORF) in a transposon as an exon) [24] Depending on the letters used for replacement, masking can be classified as soft or hard: in soft masking, repetitive regions are indicated with lowercase letters (a, c, g, or t), whereas in hard masking, the letters of these regions are replaced with N's. This way, for example, soft masking can be used to exclude word matches and avoid initiating an alignment in those regions, and hard masking, apart from all of this, can also exclude masked regions from alignment scores. [29] [30]

Evidence alignment

The next step after genome masking usually involves aligning all available transcript and protein evidence with the analyzed genome, that is, aligning all known expressed sequence tags (ESTs), RNAs and proteins of the organism being annotated with the genome. [31] Although it is optional, it can improve gene sequence elucidation because RNAs and proteins are direct products of coding sequences. [19]

If RNA-Seq data is available, it may be used to annotate and quantify all of the genes and their isoforms located in the corresponding genome, providing not only their locations, but also their rates of expression. [32] However, transcripts provide insufficient information for gene prediction because they might be unobtainable from some genes, they may encode operons of more than one gene, and their start and stop codons cannot be determined due to frameshifts and translation initiation factors. [19] To solve this problem, proteogenomics based approaches are employed, which utilize information from expressed proteins often derived from mass spectrometry. [33]

Splice identification

Annotation of eukaryotic genomes has an extra layer of difficulty due to RNA splicing, a post-transcriptional process in which introns (non-coding regions) are removed and exons (coding regions) are joined. [23] Therefore, eukaryotic coding sequences (CDS) are discontinuous, and, to ensure their proper identification, intronic regions must be filtered. To do so, annotation pipelines must find the exon-intron boundaries, and multiple methodologies have been developed for this purpose. One solution is to use known exon boundaries for alignment; for instance, many introns begin with GT and end with AG. [31] This approach, however, cannot detect novel boundaries, so alternatives like machine learning algorithms exist that are trained on known exon boundaries and quality information to predict new ones. [34] Predictors of new exon boundaries usually require efficient data-compression and alignment algorithms, but they are prone to failure in boundaries located in regions with low sequence coverage or high error-rates produced during sequencing. [35] [36]

Feature prediction

A genome is divided in coding and noncoding regions, and the last step of structural annotation consists in identifying these features within the genome. In fact, the primary task in genome annotation is gene prediction, which is why numerous methods have been developed for this purpose. [19] Gene prediction is a misleading term, as most gene predictors only identify coding sequences (CDS) and do not report untranslated regions (UTRs); for this reason, CDS prediction has been proposed as a more accurate term. [24] CDS predictors detect genome features through methods called sensors, which include signal sensors that identify functional site signals such as promoters and polyA sites, and content sensors that classify DNA sequences into coding and noncoding content. [37] Whereas prokaryotic CDS predictors mostly deal with open reading frames (ORFs), which are segments of DNA between the start and stop codons, eukaryotic CDS predictors are faced with a more difficult problem because of the complex organization of eukaryotic genes. [3] CDS prediction methods can be classified into three broad categories: [2] [31]

Functional annotation

Functional annotation assigns functions to the genomic elements found by structural annotation, [7] by relating them to biological processes such as the cell cycle, cell death, development, metabolism, etc. [3] It may also be used as an additional quality check by identifying elements that may have been annotated by error. [2]

Coding sequence function prediction

An example Gene Ontology (GO) ancestor chart organized as a directed acyclic graph taken from QuickGO. It shows the molecular functions, biological processes, and cellular components in which the matrilin complex, a component of the extracellular matrix, is involved. Every box is an ontology term that falls into one of the three GO categories and is color-coded respectively. Ontology terms are related to each other through specific qualifiers (such as "is a", "part of", etc.), which are represented by different kinds of arrows. Matrilin Complex GO ancestor chart.jpg
An example Gene Ontology (GO) ancestor chart organized as a directed acyclic graph taken from QuickGO. It shows the molecular functions, biological processes, and cellular components in which the matrilin complex, a component of the extracellular matrix, is involved. Every box is an ontology term that falls into one of the three GO categories and is color-coded respectively. Ontology terms are related to each other through specific qualifiers (such as "is a", "part of", etc.), which are represented by different kinds of arrows.

Functional annotation of genes requires a controlled vocabulary (or ontology) to name the predicted functional features. However, because there are numerous ways to define gene functions, the annotation process may be hindered when it is performed by different research groups. As such, a standardized controlled vocabulary must be employed, the most comprehensive of which is the Gene Ontology (GO). It classifies functional properties into one of three categories (molecular function, biological process, and cellular component) and organizes them in a directed acyclic graph, in which every node is a particular function, and every edge (or arrow) between two nodes indicates a parent-child or subcategory-category relationship. [40] [41] As of 2020, GO is the most widely used controlled vocabulary for functional annotation of genes, followed by the MIPS Functional Catalog (FunCat). [42]

Some conventional methods for functional annotation are homology-based, which rely on local alignment search tools. [40] Its premise is that high sequence conservation between two genomic elements implies that their function is conserved as well. Pairs of homologous sequences that appeared through paralogy, orthology, or xenology usually perform a similar function. However, orthologous sequences should be treated with caution because of two reasons: (1) they might have different names depending on when they were originally annotated, and (2) they may not perform the same functional role in two different organisms. Annotators often refer to an analogous sequence when no paralogy, orthology or xenology was found. [19] Homology-based methods have several drawbacks, such as errors in the database, low sensitivity/specificity, inability to distinguish between paralogy and homology, [43] artificially high scores due to the presence of low complexity regions, and significant variation within a protein family. [44]

Functional annotation can be performed through probabilistic methods. The distribution of hydrophilic and hydrophobic amino acids indicates whether a protein is located in a solution or membrane. Specific sequence motifs provide information on posttranslational modifications and final location of any given protein. [19] Probabilistic methods may be paired with a controlled vocabulary, such as GO; for example, protein-protein interaction (PPI) networks usually place proteins with similar functions close to each other. [45]

Machine learning methods are also used to generate functional annotations for novel proteins based on GO terms. Generally, they consist in constructing a binary classifier for each GO term, which are then joined to make predictions on individual GO terms (forming a multiclass classifier) for which confidence scores are later obtained. The support vector machine (SVM) is the most widely used binary classifier in functional annotation; however, other algorithms, such as k-nearest neighbors (kNN) and convolutional neural network (CNN), have also been employed. [40]

Binary or multiclass classification methods for functional annotation generally produce less accurate results because they do not take into account the interrelations between GO terms. More advanced methods that consider these interrelations do so by either a flat or hierarchical approach, which are distinguished by the fact that the former does not take into account the ontology structure, while the latter does. Some of these methods compress the GO terms by matrix factorization or by hashing, thus boosting their performance. [42]

Noncoding sequence function prediction

Noncoding sequences (ncDNA) are those that do not code for proteins. They include elements such as pseudogenes, segmental duplications, binding sites and RNA genes. [28]

Pseudogenes are mutated copies of protein-coding genes that lost their coding function due to a disruption in their open reading frame (ORF), making them untranslatable. [28] They may be identified using one of the following two methods: [46]

Segmental duplications are DNA segments of more than 1000 base pairs that are repeated in the genome with more than 90% sequence identity. Two strategies used for their identification are WGAC and WSSD: [47]

DNA binding sites are regions in the genome sequence that bind to and interact with specific proteins. They play an important role in DNA replication and repair, transcriptional regulation, and viral infection. Binding site prediction involves the use of one of the following two methods: [49]

Noncoding RNA (ncRNA), produced by RNA genes, is a type of RNA that is not translated into a protein. It includes molecules such as tRNA, rRNA, snoRNA, and microRNA, as well as noncoding mRNA-like transcripts. Ab initio prediction of RNA genes in a single genome often yields inaccurate results (with an exception being miRNA), so multi-genome comparative methods are used instead. These methods are specifically concerned with the secondary structures of ncRNA, as they are conserved in related species even when their sequence is not. Therefore, by performing a multiple sequence alignment, more useful information can be obtained for their prediction. Homology search may also be employed to identify RNA genes, but this procedure is complicated, especially in eukaryotes, due to presence of a large number of repeats and pseudogenes. [50]

Visualization

A snapshot of an annotated GBK file created with Prokka. It shows the components (features) of a small portion of Candidatus Carsonella ruddii's genome, including their positions (structural annotation) and inferred functions (functional annotation). GBK File Snapshot.svg
A snapshot of an annotated GBK file created with Prokka. It shows the components (features) of a small portion of Candidatus Carsonella ruddii's genome, including their positions (structural annotation) and inferred functions (functional annotation).

File formats

Visualization of annotations in a genome browser requires a descriptive output file, which should describe the intron-exon structures of each annotation, their start and stop codons, UTRs and alternative transcripts, and ideally should include information about the sequence alignments and gene predictions that support each gene model. Some commonly used formats for describing annotations are GenBank, GFF3, GTF, BED and EMBL. [24] Some of these formats use controlled vocabularies and ontologies to define their descriptive terminologies and guarantee interoperability between analysis and visualization tools. [2]

Genome browsers

Genomic browsers are software products that simplify the analysis and visualization of large genomic sequence and annotation data to gain biological insight, via a graphical interface. [52] [31] [53]

Genomic browsers can be divided into web-based genomic browsers and stand-alone genomic browsers. The former use information from databases and can be classified into multiple-species (integrate sequence and annotations of multiple organisms and promote cross-species comparative analysis) and species-specific (focus on one organism and the annotations for particular species). The latter are not necessarily linked to a specific genome database but are general-purpose browsers that can be downloaded and installed as an application on a local computer. [54] [19]

Comparative visualization of genomes

A linear comparative genome visualization of several type species of phylogenetically related viral families and genera. Functional annotations of proteins are displayed in distinct colors and homologies in different tones. Viruses-07-02761-g005.png
A linear comparative genome visualization of several type species of phylogenetically related viral families and genera. Functional annotations of proteins are displayed in distinct colors and homologies in different tones.

Comparative genomics aims to identify similarities and differences in genomic features, as well as to examine evolutionary relationships between organisms. [55] Visualization tools capable of illustrating the comparative behavior between two or more genomes are essential for this approach, and can be classified into three categories based on the representation of the relationships between the compared genomes: [19]

Quality control

The quality of the sequence assembly influences the quality of the annotation, so it is important to assess assembly quality before performing the subsequent annotation steps. [31] In order to quantify the quality of a genome annotation, three metrics have been used: recall, precision and accuracy; although these measures are not explicitly used in annotation projects, but rather in discussions of prediction accuracy. [56]

Community annotation approaches are great techniques for quality control and standardization in genome annotation. An annotation jamboree that took part in 2002, led to the creation of the annotation standards used by the Sanger Institute's Human and Vertebrate Analysis Project (HAVANA). [57] [20]

Re-annotation

Annotation projects often rely on previous annotations of an organism's genome; however, these older annotations may contain errors that can propagate to new annotations. As new genome analysis technologies are developed and richer databases become available, the annotation of some older genomes may be updated. This process, known as reannotation, can provide users with new information about the genome, including details about genes and protein functions. Re-annotation is therefore a useful approach in quality control. [56] [58]

Community annotation

Community annotation consists in the engagement of a community (both scientific and nonscientific) in genome annotation projects. It can be classified into the following six categories: [59] [3]

A community annotation is said to be supervised when there is a coordinator who manages the project by requesting the annotation of specific items to a select number of experts. On the other hand, when anyone can enter a project and coordination is accomplished in a decentralized manner, it is called unsupervised community annotation. Supervised community annotation is short-lived and limited to the duration of the event, whereas the unsupervised counterpart does not have this limitation. However, the latter has been less successful than the former presumably due to a lack of time, motivation, incentive and/or communication. [61]

Wikipedia has multiple WikiProjects aimed at improving annotation. The Gene WikiProject, for instance, operates a bot that harvests gene data from research databases and creates gene stubs on that basis. [62] The RNA WikiProject seeks to write articles that describe individual RNAs and RNA families in an accessible way. [63]

Applications

Disease diagnosis

Gene Ontology is being used by researchers to establish a disease-gene relationship, as GO helps in the identification of novel genes, the alterations in their expression, distribution and function under a different set of conditions, such as diseased versus healthy. [41] Databases of this disease-gene relationships of different organisms have been created, such as Plant-Pathogen Ontology, [64] Plant-Associated Microbe Gene Ontology [65] or DisGeNET. [66] And some others have been implemented in pre-existing databases like Rat Disease Ontology in the Rat Genome database. [67]

Bioremediation

A great diversity of catabolic enzymes involved in hydrocarbon degradation by some bacterial strains are encoded by genes located in their mobile genetic elements (MGEs). The study of these elements is of great importance in the field of bioremediation, since recently the inoculation of wild or genetically modified strains with these MGEs has been sought in order to acquire these hydrocarbon degradation capacities. [68] In 2013, Phale et al. [69] published the genome annotation of a strain of Pseudomonas putida (CSV86), a bacterium known for its preference of naphthalene and other aromatic compounds over glucose as a carbon and energy source. In order to find the MGEs of this bacterium, its genome was annotated using RAST and the NCBI Prokaryotic Genome Annotation Pipeline (PGAP), and the identification of nine mobile elements was possible with the Insertion Sequence (IS) Finder database. This analysis concluded in the localization of the upper pathway genes of naphthalene degradation, [70] right next to the genes encoding tRNA-Gly and integrase, as well as the identification of the genes encoding enzymes involved in the degradation of salicylate, benzoate, 4-hydroxybenzoate, phenylacetic acid, hydroxyphenyl acetic acid, and the recognition of an operon involved in glucose transport in the strain.

Gene Ontology analysis is of great importance in functional annotation, and specifically in bioremediation it can be applied to know the relationships between the genes of some microorganisms with their functions and their role in the remediation of certain contaminants. This was the approach of the investigation and identification of Halomonas zincidurans strain B6(T), a bacterium with thirty-one genes encoding resistance to heavy metals, especially zinc [71] and Stenotrophomonas sp. DDT-1, a strain capable of using DDT as its sole carbon and energy source, [72] to mention a few examples.

Software

Genes in a eukaryotic genome can be annotated using various annotation tools [73] such as FINDER. [74] A modern annotation pipeline can support a user-friendly web interface and software containerization such as MOSGA. [75] [76] Modern annotation pipelines for prokaryotic genomes are Bakta, [77] Prokka [51] and PGAP. [78]

The National Center for Biomedical Ontology develops tools for automated annotation [79] of database records based on the textual descriptions of those records.

As a general method, dcGO [80] has an automated procedure for statistically inferring associations between ontology terms and protein domains or combinations of domains from the existing gene/protein-level annotations.

A variety of software tools have been developed that allow scientists to view and share genome annotations, such as MAKER.

Genome annotation is an active area of investigation and involves a number of different organizations in the life science community which publish the results of their efforts in publicly available biological databases accessible via the web and other electronic means. Here is an alphabetical listing of on-going projects relevant to genome annotation:

Related Research Articles

<span class="mw-page-title-main">Bioinformatics</span> Computational analysis of large, complex sets of biological data

Bioinformatics is an interdisciplinary field of science that develops methods and software tools for understanding biological data, especially when the data sets are large and complex. Bioinformatics uses biology, chemistry, physics, computer science, computer programming, information engineering, mathematics and statistics to analyze and interpret biological data. The subsequent process of analyzing and interpreting data is referred to as computational biology.

The coding region of a gene, also known as the coding sequence (CDS), is the portion of a gene's DNA or RNA that codes for a protein. Studying the length, composition, regulation, splicing, structures, and functions of coding regions compared to non-coding regions over different species and time periods can provide a significant amount of important information regarding gene organization and evolution of prokaryotes and eukaryotes. This can further assist in mapping the human genome and developing gene therapy.

In bioinformatics, sequence analysis is the process of subjecting a DNA, RNA or peptide sequence to any of a wide range of analytical methods to understand its features, function, structure, or evolution. It can be performed on the entire genome, transcriptome or proteome of an organism, and can also involve only selected segments or regions, like tandem repeats and transposable elements. Methodologies used include sequence alignment, searches against biological databases, and others.

In genetics, an expressed sequence tag (EST) is a short sub-sequence of a cDNA sequence. ESTs may be used to identify gene transcripts, and were instrumental in gene discovery and in gene-sequence determination. The identification of ESTs has proceeded rapidly, with approximately 74.2 million ESTs now available in public databases. EST approaches have largely been superseded by whole genome and transcriptome sequencing and metagenome sequencing.

In computational biology, gene prediction or gene finding refers to the process of identifying the regions of genomic DNA that encode genes. This includes protein-coding genes as well as RNA genes, but may also include prediction of other functional elements such as regulatory regions. Gene finding is one of the first and most important steps in understanding the genome of a species once it has been sequenced.

<span class="mw-page-title-main">Comparative genomics</span> Field of biological research

Comparative genomics is a branch of biological research that examines genome sequences across a spectrum of species, spanning from humans and mice to a diverse array of organisms from bacteria to chimpanzees. This large-scale holistic approach compares two or more genomes to discover the similarities and differences between the genomes and to study the biology of the individual genomes. Comparison of whole genome sequences provides a highly detailed view of how organisms are related to each other at the gene level. By comparing whole genome sequences, researchers gain insights into genetic relationships between organisms and study evolutionary changes. The major principle of comparative genomics is that common features of two organisms will often be encoded within the DNA that is evolutionarily conserved between them. Therefore, Comparative genomics provides a powerful tool for studying evolutionary changes among organisms, helping to identify genes that are conserved or common among species, as well as genes that give unique characteristics of each organism. Moreover, these studies can be performed at different levels of the genomes to obtain multiple perspectives about the organisms.

In molecular biology, reading frames are defined as spans of DNA sequence between the start and stop codons. Usually, this is considered within a studied region of a prokaryotic DNA sequence, where only one of the six possible reading frames will be "open". Such an ORF may contain a start codon and by definition cannot extend beyond a stop codon. That start codon indicates where translation may start. The transcription termination site is located after the ORF, beyond the translation stop codon. If transcription were to cease before the stop codon, an incomplete protein would be made during translation.

<span class="mw-page-title-main">Conserved sequence</span> Similar DNA, RNA or protein sequences within genomes or among species

In evolutionary biology, conserved sequences are identical or similar sequences in nucleic acids or proteins across species, or within a genome, or between donor and receptor taxa. Conservation indicates that a sequence has been maintained by natural selection.

BLAT is a pairwise sequence alignment algorithm that was developed by Jim Kent at the University of California Santa Cruz (UCSC) in the early 2000s to assist in the assembly and annotation of the human genome. It was designed primarily to decrease the time needed to align millions of mouse genomic reads and expressed sequence tags against the human genome sequence. The alignment tools of the time were not capable of performing these operations in a manner that would allow a regular update of the human genome assembly. Compared to pre-existing tools, BLAT was ~500 times faster with performing mRNA/DNA alignments and ~50 times faster with protein/protein alignments.

<span class="mw-page-title-main">MicrobesOnline</span>

MicrobesOnline is a publicly and freely accessible website that hosts multiple comparative genomic tools for comparing microbial species at the genomic, transcriptomic and functional levels. MicrobesOnline was developed by the Virtual Institute for Microbial Stress and Survival, which is based at the Lawrence Berkeley National Laboratory in Berkeley, California. The site was launched in 2005, with regular updates until 2011.

SUPERFAMILY is a database and search platform of structural and functional annotation for all proteins and genomes. It classifies amino acid sequences into known structural domains, especially into SCOP superfamilies. Domains are functional, structural, and evolutionary units that form proteins. Domains of common Ancestry are grouped into superfamilies. The domains and domain superfamilies are defined and described in SCOP. Superfamilies are groups of proteins which have structural evidence to support a common evolutionary ancestor but may not have detectable sequence homology.

Protein function prediction methods are techniques that bioinformatics researchers use to assign biological or biochemical roles to proteins. These proteins are usually ones that are poorly studied or predicted based on genomic sequence data. These predictions are often driven by data-intensive computational procedures. Information may come from nucleic acid sequence homology, gene expression profiles, protein domain structures, text mining of publications, phylogenetic profiles, phenotypic profiles, and protein-protein interaction. Protein function is a broad term: the roles of proteins range from catalysis of biochemical reactions to transport to signal transduction, and a single protein may play a role in multiple processes or cellular pathways.

De novo transcriptome assembly is the de novo sequence assembly method of creating a transcriptome without the aid of a reference genome.

αr9 is a family of bacterial small non-coding RNAs with representatives in a broad group of α-proteobacteria from the order Hyphomicrobiales. The first member of this family (Smr9C) was found in a Sinorhizobium meliloti 1021 locus located in the chromosome (C). Further homology and structure conservation analysis have identified full-length Smr9C homologs in several nitrogen-fixing symbiotic rhizobia, in the plant pathogens belonging to Agrobacterium species as well as in a broad spectrum of Brucella species. αr9C RNA species are 144-158 nt long and share a well defined common secondary structure consisting of seven conserved regions. Most of the αr9 transcripts can be catalogued as trans-acting sRNAs expressed from well-defined promoter regions of independent transcription units within intergenic regions (IGRs) of the α-proteobacterial genomes.

αr35 is a family of bacterial small non-coding RNAs with representatives in a reduced group of Alphaproteobacteria from the order Hyphomicrobiales. The first member of this family (Smr35B) was found in a Sinorhizobium meliloti 1021 locus located in the symbiotic plasmid B (pSymB). Further homology and structure conservation analysis have identified full-length SmrB35 homologs in other legume symbionts, as well as in the human and plant pathogens Brucella anthropi and Agrobacterium tumefaciens, respectively. αr35 RNA species are 139-142 nt long and share a common secondary structure consisting of two stem loops and a well conserved rho independent terminator. Most of the αr35 transcripts can be catalogued as trans-acting sRNAs expressed from well-defined promoter regions of independent transcription units within intergenic regions of the Alphaproteobacterial genomes.

WormBase is an online biological database about the biology and genome of the nematode model organism Caenorhabditis elegans and contains information about other related nematodes. WormBase is used by the C. elegans research community both as an information resource and as a place to publish and distribute their results. The database is regularly updated with new versions being released every two months. WormBase is one of the organizations participating in the Generic Model Organism Database (GMOD) project.

Single nucleotide polymorphism annotation is the process of predicting the effect or function of an individual SNP using SNP annotation tools. In SNP annotation the biological information is extracted, collected and displayed in a clear form amenable to query. SNP functional annotation is typically performed based on the available information on nucleic acid and protein sequences.

SEA-PHAGES stands for Science Education Alliance-Phage Hunters Advancing Genomics and Evolutionary Science; it was formerly called the National Genomics Research Initiative. This was the first initiative launched by the Howard Hughes Medical Institute (HHMI) Science Education Alliance (SEA) by their director Tuajuanda C. Jordan in 2008 to improve the retention of Science, technology, engineering, and mathematics (STEM) students. SEA-PHAGES is a two-semester undergraduate research program administered by the University of Pittsburgh's Graham Hatfull's group and the Howard Hughes Medical Institute's Science Education Division. Students from over 100 universities nationwide engage in authentic individual research that includes a wet-bench laboratory and a bioinformatics component.

ANNOVAR is a bioinformatics software tool for the interpretation and prioritization of single nucleotide variants (SNVs), insertions, deletions, and copy number variants (CNVs) of a given genome.

References

  1. Zheng S, Poczai P, Hyvönen J, Tang J, Amiryousefi A (2020). "Chloroplot: An Online Program for the Versatile Plotting of Organelle Genomes". Frontiers in Genetics. 11 (576124): 576124. doi: 10.3389/fgene.2020.576124 . PMC   7545089 . PMID   33101394.
  2. 1 2 3 4 5 6 Dominguez Del Angel V, Hjerde E, Sterck L, Capella-Gutierrez S, Notredame C, Vinnere Pettersson O, et al. (5 February 2018). "Ten steps to get started in Genome Assembly and Annotation". F1000Research. 7 (148): 148. doi: 10.12688/f1000research.13598.1 . PMC   5850084 . PMID   29568489.
  3. 1 2 3 4 5 Stein L (July 2001). "Genome annotation: from sequence to biology". Nature Reviews. Genetics. 2 (7): 493–503. doi:10.1038/35080529. PMID   11433356. S2CID   12044602.
  4. Davis CP (29 March 2021). "Medical Definition of Genome annotation". MedicineNet. Archived from the original on 9 February 2023. Retrieved 17 April 2023.
  5. Koonin E, Galperin MY (2003). "Genome Annotation and Analysis". Sequence — Evolution — Function (1st ed.). Springer US. pp. 193–226. doi:10.1007/978-1-4757-3783-7_6. ISBN   978-1-4757-3783-7.
  6. 1 2 Mishra P, Maurya R, Avashthi H, Mittal S, Chandra M, Ramteke PW (2021). "Genome assembly and annotation". In Singh DB, Pathak RK (eds.). Bioinformatics: Methods and Applications (1st ed.). Elsevier Science. pp. 49–66. doi:10.1016/B978-0-323-89775-4.00013-4. ISBN   9780323897754.
  7. 1 2 Bright LA, Burgess SC, Chowdhary B, Swiderski CE, McCarthy FM (October 2009). "Structural and functional-annotation of an equine whole genome oligoarray". BMC Bioinformatics. 10 (Suppl 11): S8. doi: 10.1186/1471-2105-10-S11-S8 . PMC   3226197 . PMID   19811692.
  8. Reed JL, Famili I, Thiele I, Palsson BO (February 2006). "Towards multidimensional genome annotation". Nature Reviews. Genetics. 7 (2): 130–141. doi:10.1038/nrg1769. PMID   16418748. S2CID   13107786.
  9. 1 2 3 4 Abril JF, Castellano S (2019). "Genome Annotation". In Ranganathan S, Nakai K, Schonbach C, Gribskov M (eds.). Encyclopedia of Bioinformatics and Computational Biology (1st ed.). Elsevier Science. pp. 195–209. doi:10.1016/B978-0-12-809633-8.20226-4. ISBN   978-0-12-811432-2. S2CID   226248103.
  10. 1 2 3 4 Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, et al. (August 2016). "NCBI prokaryotic genome annotation pipeline". Nucleic Acids Research. 44 (14): 6614–6624. doi:10.1093/nar/gkw569. PMC   5001611 . PMID   27342282.
  11. Staden R (November 1977). "Sequence data handling by computer". Nucleic Acids Research. 4 (11): 4037–4051. doi:10.1093/nar/4.11.4037. PMC   343220 . PMID   593900.
  12. Staden R, McLachlan AD (January 1982). "Codon preference and its use in identifying protein coding regions in long DNA sequences". Nucleic Acids Research. 10 (1): 141–156. doi:10.1093/nar/10.1.141. PMC   326122 . PMID   7063399.
  13. 1 2 Gribskov M, Devereux J, Burgess RR (January 1984). "The codon preference plot: graphic analysis of protein coding sequences and prediction of gene expression". Nucleic Acids Research. 12 (1 Pt 2): 539–549. doi:10.1093/nar/12.1part2.539. PMC   321069 . PMID   6694906.
  14. Fickett JW (August 1996). "Finding genes by computer: the state of the art". Trends in Genetics. 12 (8): 316–320. doi:10.1016/0168-9525(96)10038-X. PMID   8783942.
  15. Grosjean H, Fiers W (June 1982). "Preferential codon usage in prokaryotic genes: the optimal codon-anticodon interaction energy and the selective codon usage in efficiently expressed genes". Gene. 18 (3): 199–209. doi:10.1016/0378-1119(82)90157-3. PMID   6751939.
  16. Grantham R, Gautier C, Gouy M, Mercier R, Pavé A (January 1980). "Codon catalog usage and the genome hypothesis". Nucleic Acids Research. 8 (1): r49–r62. doi:10.1093/nar/8.1.197-c. PMC   327256 . PMID   6986610.
  17. Lukashin AV, Borodovsky M (February 1998). "GeneMark.hmm: new solutions for gene finding". Nucleic Acids Research. 26 (4): 1107–1115. doi:10.1093/nar/26.4.1107. PMC   147337 . PMID   9461475.
  18. Salzberg SL, Delcher AL, Kasif S, White O (January 1998). "Microbial gene identification using interpolated Markov models". Nucleic Acids Research. 26 (2): 544–548. doi:10.1093/nar/26.2.544. PMC   147303 . PMID   9421513.
  19. 1 2 3 4 5 6 7 8 Soh J, Gordon PM, Sensen CW (4 September 2012). Genome Annotation. New York: Chapman and Hall/CRC. doi:10.1201/b12682. ISBN   9780429064012. Archived from the original on 18 April 2023. Retrieved 18 April 2023.
  20. 1 2 Brent MR (December 2005). "Genome annotation past, present, and future: how to define an ORF at each locus". Genome Research. 15 (12): 1777–1786. doi: 10.1101/gr.3866105 . PMID   16339376.
  21. ENCODE Project Consortium (April 2011). Becker PB (ed.). "A user's guide to the encyclopedia of DNA elements (ENCODE)". PLOS Biology. 9 (4): e1001046. doi: 10.1371/journal.pbio.1001046 . PMC   3079585 . PMID   21526222. Open Access logo PLoS transparent.svg
  22. Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE, et al. (November 2012). "An integrated map of genetic variation from 1,092 human genomes". Nature. 491 (7422): 56–65. Bibcode:2012Natur.491...56T. doi:10.1038/nature11632. PMC   3498066 . PMID   23128226.
  23. 1 2 Kahl G (2015). The dictionary of genomics, transcriptomics and proteomics (Fifth ed.). Weinheim: Wiley. doi:10.1002/9783527678679. ISBN   9783527678679. Archived from the original on 4 August 2022. Retrieved 24 April 2023.
  24. 1 2 3 4 5 Yandell M, Ence D (April 2012). "A beginner's guide to eukaryotic genome annotation". Nature Reviews. Genetics. 13 (5): 329–342. doi:10.1038/nrg3174. PMID   22510764. S2CID   3352427.
  25. Treangen TJ, Abraham AL, Touchon M, Rocha EP (May 2009). "Genesis, effects and fates of repeats in prokaryotic genomes". FEMS Microbiology Reviews. 33 (3): 539–571. doi: 10.1111/j.1574-6976.2009.00169.x . PMID   19396957.
  26. Liehr T (February 2021). "Repetitive Elements in Humans". International Journal of Molecular Sciences. 22 (4): 2072. doi: 10.3390/ijms22042072 . PMC   7922087 . PMID   33669810.
  27. Bergman CM, Quesneville H (November 2007). "Discovering and detecting transposable elements in genome sequences". Briefings in Bioinformatics. 8 (6): 382–392. doi: 10.1093/bib/bbm048 . PMID   17932080.
  28. 1 2 3 Alexander RP, Fang G, Rozowsky J, Snyder M, Gerstein MB (August 2010). "Annotating non-coding regions of the genome". Nature Reviews. Genetics. 11 (8): 559–571. doi:10.1038/nrg2814. PMID   20628352. S2CID   6617359.
  29. Edgar RC (October 2010). "Search and clustering orders of magnitude faster than BLAST". Bioinformatics. 26 (19): 2460–2461. doi: 10.1093/bioinformatics/btq461 . PMID   20709691.
  30. Edgar R. "Sequence masking". drive5.com. Archived from the original on 3 February 2020. Retrieved 25 April 2023.
  31. 1 2 3 4 5 Ejigu GF, Jung J (September 2020). "Review on the Computational Genome Annotation of Sequences Obtained by Next-Generation Sequencing". Biology. 9 (9): 295. doi: 10.3390/biology9090295 . PMC   7565776 . PMID   32962098.
  32. Garber M, Grabherr MG, Guttman M, Trapnell C (June 2011). "Computational methods for transcriptome annotation and quantification using RNA-seq". Nature Methods. 8 (6): 469–477. doi:10.1038/nmeth.1613. PMID   21623353. S2CID   205419756.
  33. Gupta N, Tanner S, Jaitly N, Adkins JN, Lipton M, Edwards R, et al. (September 2007). "Whole proteome analysis of post-translational modifications: applications of mass-spectrometry for proteogenomic annotation". Genome Research. 17 (9): 1362–1377. doi:10.1101/gr.6427907. PMC   1950905 . PMID   17690205.
  34. De Bona F, Ossowski S, Schneeberger K, Rätsch G (August 2008). "Optimal spliced alignments of short sequence reads". Bioinformatics. 24 (16): i174–i180. doi: 10.1093/bioinformatics/btn300 . PMID   18689821.
  35. Trapnell C, Pachter L, Salzberg SL (May 2009). "TopHat: discovering splice junctions with RNA-Seq". Bioinformatics. 25 (9): 1105–1111. doi:10.1093/bioinformatics/btp120. PMC   2672628 . PMID   19289445.
  36. Križanovic K, Echchiki A, Roux J, Šikic M (March 2018). "Evaluation of tools for long read RNA-seq splice-aware alignment". Bioinformatics. 34 (5): 748–754. doi:10.1093/bioinformatics/btx668. PMC   6192213 . PMID   29069314.
  37. McHardy AC, Kloetgen A (2017). "Finding Genes in Genome Sequence". In Keith JM (ed.). Bioinformatics. Methods in Molecular Biology. Vol. 1525 (Second ed.). New York: Springer. pp. 271–291. doi:10.1007/978-1-4939-6622-6_11. ISBN   978-1-4939-6622-6. PMID   27896725.
  38. Brent MR, Guigó R (June 2004). "Recent advances in gene structure prediction". Current Opinion in Structural Biology. 14 (3): 264–272. doi:10.1016/j.sbi.2004.05.007. PMID   15193305.
  39. Binns D, Dimmer E, Huntley R, Barrell D, O'Donovan C, Apweiler R (November 2009). "QuickGO: a web-based tool for Gene Ontology searching". Bioinformatics. 25 (22): 3045–3046. doi:10.1093/bioinformatics/btp536. PMC   2773257 . PMID   19744993.
  40. 1 2 3 Vu TT, Jung J (2021). "Protein function prediction with gene ontology: from traditional to deep learning models". PeerJ. 9: e12019. doi: 10.7717/peerj.12019 . PMC   8395570 . PMID   34513334.
  41. 1 2 Saxena R, Bishnoi R, Singla D (2021). "Gene Ontology: application and importance in functional annotation of the genomic data". In Singh B, Pathak RK (eds.). Bioinformatics : methods and applications. London: Academic Press. pp. 145–157. doi:10.1016/B978-0-323-89775-4.00015-8. ISBN   978-0-323-89775-4.
  42. 1 2 Zhao Y, Wang J, Chen J, Zhang X, Guo M, Yu G (2020). "A Literature Review of Gene Function Prediction by Modeling Gene Ontology". Frontiers in Genetics. 11: 400. doi: 10.3389/fgene.2020.00400 . PMC   7193026 . PMID   32391061.
  43. Sasson O, Kaplan N, Linial M (June 2006). "Functional annotation prediction: all for one and one for all". Protein Science. 15 (6): 1557–1562. doi:10.1110/ps.062185706. PMC   2242553 . PMID   16672244.
  44. Sinha S, Lynn AM, Desai DK (October 2020). "Implementation of homology based and non-homology based computational methods for the identification and annotation of orphan enzymes: using Mycobacterium tuberculosis H37Rv as a case study". BMC Bioinformatics. 21 (1): 466. doi: 10.1186/s12859-020-03794-x . PMC   574302 . PMID   33076816.
  45. Letovsky S, Kasif S (2003). "Predicting protein function from protein/protein interaction data: a probabilistic approach". Bioinformatics. 19 (Suppl 1): i197–i204. doi: 10.1093/bioinformatics/btg1026 . PMID   12855458.
  46. Dainat J, Pontarotti P (2021). "Methods to Identify and Study the Evolution of Pseudogenes Using a Phylogenetic Approach" (PDF). In Poliseno L (ed.). Pseudogenes. Methods in Molecular Biology. Vol. 2324 (Second ed.). New York: Springer. pp. 21–34. doi:10.1007/978-1-0716-1503-4_2. ISBN   978-1-0716-1503-4. PMID   34165706. S2CID   235625288.
  47. Numanagic I, Gökkaya AS, Zhang L, Berger B, Alkan C, Hach F (September 2018). "Fast characterization of segmental duplications in genome assemblies". Bioinformatics. 34 (17): i706–i714. doi:10.1093/bioinformatics/bty586. PMC   6129265 . PMID   30423092.
  48. Hartasánchez DA, Brasó-Vives M, Heredia-Genestar JM, Pybus M, Navarro A (November 2018). "Effect of Collapsed Duplications on Diversity Estimates: What to Expect". Genome Biology and Evolution. 10 (11): 2899–2905. doi:10.1093/gbe/evy223. PMC   6239678 . PMID   30364947.
  49. Si J, Zhao R, Wu R (March 2015). "An overview of the prediction of protein DNA-binding sites". International Journal of Molecular Sciences. 16 (3): 5194–5215. doi: 10.3390/ijms16035194 . PMC   4394471 . PMID   25756377.
  50. Griffiths-Jones S (2007). "Annotating noncoding RNA genes". Annual Review of Genomics and Human Genetics. 8: 279–298. doi:10.1146/annurev.genom.8.080706.092419. PMID   17506659.
  51. 1 2 Seemann T (July 2014). "Prokka: rapid prokaryotic genome annotation". Bioinformatics. 30 (14): 2068–2069. doi:10.1093/bioinformatics/btu153. PMID   24642063.
  52. Valeev T, Yevshin I, Kolpakov F (2013). "BioUML Genome Browser". Virtual Biology. 1 (1): 15. doi: 10.12704/vb/e8 .
  53. Szot PS, Yang A, Wang X, Parsania C, Röhm U, Wong KH, Ho JW (May 2017). "PBrowse: a web-based platform for real-time collaborative exploration of genomic data". Nucleic Acids Research. 45 (9): e67. doi:10.1093/nar/gkw1358. PMC   5605237 . PMID   28100700.
  54. Wang J, Kong L, Gao G, Luo J (March 2013). "A brief introduction to web-based genome browsers". Briefings in Bioinformatics. 14 (2): 131–143. doi: 10.1093/bib/bbs029 . PMID   22764121.
  55. Jung J, Kim JI, Yi G (December 2019). "geneCo: a visualized comparative genomic method to analyze multiple genome structures". Bioinformatics. 35 (24): 5303–5305. doi:10.1093/bioinformatics/btz596. PMC   6954651 . PMID   31350879.
  56. 1 2 Ouzounis CA, Karp PD (2002). "The past, present and future of genome-wide re-annotation". Genome Biology. 3 (2): COMMENT2001. doi: 10.1186/gb-2002-3-2-comment2001 . PMC   139008 . PMID   11864365.
  57. "Manual Annotation - Wellcome Sanger Institute". www.sanger.ac.uk. Archived from the original on 2 February 2023. Retrieved 28 March 2023.
  58. Siezen RJ, van Hijum SA (July 2010). "Genome (re-)annotation and open-source annotation pipelines". Microbial Biotechnology. 3 (4): 362–369. doi:10.1111/j.1751-7915.2010.00191.x. PMC   3815804 . PMID   21255336.
  59. Loveland JE, Gilbert JG, Griffiths E, Harrow JL (2012). "Community gene annotation in practice". Database. 2012 (2012): bas009. doi:10.1093/database/bas009. PMC   3308165 . PMID   22434843.
  60. Hartl DL (April 2000). "Fly meets shotgun: shotgun wins". Nature Genetics. 24 (4): 327–328. doi:10.1038/74125. PMID   10742085. S2CID   5354139.
  61. Mazumder R, Natale DA, Julio JA, Yeh LS, Wu CH (February 2010). "Community annotation in biology". Biology Direct. 5 (1): 12. doi: 10.1186/1745-6150-5-12 . PMC   2834641 . PMID   20167071.
  62. Huss JW, Orozco C, Goodale J, Wu C, Batalov S, Vickers TJ, et al. (July 2008). "A gene wiki for community annotation of gene function". PLOS Biology. 6 (7): e175. doi: 10.1371/journal.pbio.0060175 . PMC   2443188 . PMID   18613750.
  63. Daub J, Gardner PP, Tate J, Ramsköld D, Manske M, Scott WG, et al. (December 2008). "The RNA WikiProject: community annotation of RNA families". RNA. 14 (12): 2462–2464. doi:10.1261/rna.1200508. PMC   2590952 . PMID   18945806.
  64. Cooper L, Jaiswal P (2016). "The Plant Ontology: A Tool for Plant Genomics". In Edwards D (ed.). Plant Bioinformatics. Methods in Molecular Biology. Vol. 1374 (2nd ed.). Totowa, N.J.: Humana Press. pp. 89–114. doi:10.1007/978-1-4939-3167-5_5. ISBN   978-1-4939-3167-5. PMID   26519402.
  65. Torto-Alalibo T, Collmer CW, Gwinn-Giglio M (February 2009). "The Plant-Associated Microbe Gene Ontology (PAMGO) Consortium: community development of new Gene Ontology terms describing biological processes involved in microbe-host interactions". BMC Microbiology. 9 (Suppl 1): S1. doi: 10.1186/1471-2180-9-S1-S1 . PMC   2654661 . PMID   19278549.
  66. Piñero J, Ramírez-Anguita JM, Saüch-Pitarch J, Ronzano F, Centeno E, Sanz F, Furlong LI (January 2020). "The DisGeNET knowledge platform for disease genomics: 2019 update". Nucleic Acids Research. 48 (D1): D845–D855. doi:10.1093/nar/gkz1021. PMC   7145631 . PMID   31680165.
  67. Hayman GT, Laulederkind SJ, Smith JR, Wang SJ, Petri V, Nigam R, et al. (2016). "The Disease Portals, disease-gene annotation and the RGD disease ontology at the Rat Genome Database". Database. 2016: baw034. doi:10.1093/database/baw034. PMC   4805243 . PMID   27009807.
  68. Top EM, Springael D, Boon N (November 2002). "Catabolic mobile genetic elements and their potential use in bioaugmentation of polluted soils and waters". FEMS Microbiology Ecology. 42 (2): 199–208. doi: 10.1111/j.1574-6941.2002.tb01009.x . hdl: 1854/LU-348539 . PMID   19709279. S2CID   15173391.
  69. Phale PS, Paliwal V, Raju SC, Modak A, Purohit HJ (January 2013). "Genome Sequence of Naphthalene-Degrading Soil Bacterium Pseudomonas putida CSV86". Genome Announcements. 1 (1): 234–235. doi:10.1128/genomeA.00234-12. PMC   3587945 . PMID   23469351.
  70. Trivedi VD, Jangir PK, Sharma R, Phale PS (December 2016). "Insights into functional and evolutionary analysis of carbaryl metabolic pathway from Pseudomonas sp. strain C5pp". Scientific Reports. 6 (1): 38430. Bibcode:2016NatSR...638430T. doi:10.1038/srep38430. PMC   5141477 . PMID   27924916.
  71. Huo YY, Li ZY, Cheng H, Wang CS, Xu XW (2014). "High quality draft genome sequence of the heavy metal resistant bacterium Halomonas zincidurans type strain B6(T)". Standards in Genomic Sciences. 9 (30): 30. doi: 10.1186/1944-3277-9-30 . PMC   4286145 . PMID   25945155.
  72. Pan X, Lin D, Zheng Y, Zhang Q, Yin Y, Cai L, et al. (February 2016). "Biodegradation of DDT by Stenotrophomonas sp. DDT-1: Characterization and genome functional analysis". Scientific Reports. 6 (1): 21332. Bibcode:2016NatSR...621332P. doi:10.1038/srep21332. PMC   4758049 . PMID   26888254.
  73. GAAS, NBIS -- National Bioinformatics Infrastructure Sweden, 13 April 2022, retrieved 25 April 2022
  74. Banerjee S, Bhandary P, Woodhouse M, Sen TZ, Wise RP, Andorf CM (April 2021). "FINDER: an automated software package to annotate eukaryotic genes from RNA-Seq data and associated protein sequences". BMC Bioinformatics. 22 (1): 205. doi: 10.1186/s12859-021-04120-9 . PMC   8056616 . PMID   33879057.
  75. Martin R, Hackl T, Hattab G, Fischer MG, Heider D (April 2021). Birol I (ed.). "MOSGA: Modular Open-Source Genome Annotator". Bioinformatics. 36 (22–23): 5514–5515. doi:10.1093/bioinformatics/btaa1003. hdl: 21.11116/0000-0006-FED4-D . PMID   33258916.
  76. Martin R. "MOSGA". mosga.mathematik.uni-marburg.de. Retrieved 25 April 2022.
  77. Schwengers O, Jelonek L, Dieckmann MA, Beyvers S, Blom J, Goesmann A (November 2021). "Bakta: rapid and standardized annotation of bacterial genomes via alignment-free sequence identification". Microbial Genomics. 7 (11). doi: 10.1099/mgen.0.000685 . PMC   8743544 . PMID   34739369.
  78. Li W, O'Neill KR, Haft DH, DiCuccio M, Chetvernin V, Badretdin A, et al. (January 2021). "RefSeq: expanding the Prokaryotic Genome Annotation Pipeline reach with protein family model curation". Nucleic Acids Research. 49 (D1): D1020–D1028. doi:10.1093/nar/gkaa1105. PMC   7779008 . PMID   33270901.
  79. "NCBO Annotator". ncbo.bioontology.org. Retrieved 8 February 2023.
  80. Fang H, Gough J (January 2013). "DcGO: database of domain-centric ontologies on functions, phenotypes, diseases and more". Nucleic Acids Research. 41 (Database issue): D536–D544. doi:10.1093/nar/gks1080. PMC   3531119 . PMID   23161684.