Abbreviation | DOM |
---|---|
First published | October 1, 1998 |
Latest version | DOM4 [1] November 19, 2015 |
Organization | World Wide Web Consortium, WHATWG |
Base standards | WHATWG DOM Living Standard W3C DOM4 |
HTML |
---|
Comparisons |
The Document Object Model (DOM) is a cross-platform and language-independent interface that treats an HTML or XML document as a tree structure wherein each node is an object representing a part of the document. The DOM represents a document with a logical tree. Each branch of the tree ends in a node, and each node contains objects. DOM methods allow programmatic access to the tree; with them one can change the structure, style or content of a document. [2] Nodes can have event handlers (also known as event listeners) attached to them. Once an event is triggered, the event handlers get executed. [3]
The principal standardization of the DOM was handled by the World Wide Web Consortium (W3C), which last developed a recommendation in 2004. WHATWG took over the development of the standard, publishing it as a living document. The W3C now publishes stable snapshots of the WHATWG standard.
In HTML DOM (Document Object Model), every element is a node: [4]
The history of the Document Object Model is intertwined with the history of the "browser wars" of the late 1990s between Netscape Navigator and Microsoft Internet Explorer, as well as with that of JavaScript and JScript, the first scripting languages to be widely implemented in the JavaScript engines of web browsers.
JavaScript was released by Netscape Communications in 1995 within Netscape Navigator 2.0. Netscape's competitor, Microsoft, released Internet Explorer 3.0 the following year with a reimplementation of JavaScript called JScript. JavaScript and JScript let web developers create web pages with client-side interactivity. The limited facilities for detecting user-generated events and modifying the HTML document in the first generation of these languages eventually became known as "DOM Level 0" or "Legacy DOM." No independent standard was developed for DOM Level 0, but it was partly described in the specifications for HTML 4.
Legacy DOM was limited in the kinds of elements that could be accessed. Form, link and image elements could be referenced with a hierarchical name that began with the root document object. A hierarchical name could make use of either the names or the sequential index of the traversed elements. For example, a form input element could be accessed as either document.myForm.myInput
or document.forms[0].elements[0]
.
The Legacy DOM enabled client-side form validation and simple interface interactivity like creating tooltips.
In 1997, Netscape and Microsoft released version 4.0 of Netscape Navigator and Internet Explorer respectively, adding support for Dynamic HTML (DHTML) functionality enabling changes to a loaded HTML document. DHTML required extensions to the rudimentary document object that was available in the Legacy DOM implementations. Although the Legacy DOM implementations were largely compatible since JScript was based on JavaScript, the DHTML DOM extensions were developed in parallel by each browser maker and remained incompatible. These versions of the DOM became known as the "Intermediate DOM".
After the standardization of ECMAScript, the W3C DOM Working Group began drafting a standard DOM specification. The completed specification, known as "DOM Level 1", became a W3C Recommendation in late 1998. By 2005, large parts of W3C DOM were well-supported by common ECMAScript-enabled browsers, including Internet Explorer 6 (from 2001), Opera, Safari and Gecko-based browsers (like Mozilla, Firefox, SeaMonkey and Camino).
The W3C DOM Working Group published its final recommendation and subsequently disbanded in 2004. Development efforts migrated to the WHATWG, which continues to maintain a living standard. [5] In 2009, the Web Applications group reorganized DOM activities at the W3C. [6] In 2013, due to a lack of progress and the impending release of HTML5, the DOM Level 4 specification was reassigned to the HTML Working Group to expedite its completion. [7] Meanwhile, in 2015, the Web Applications group was disbanded and DOM stewardship passed to the Web Platform group. [8] Beginning with the publication of DOM Level 4 in 2015, the W3C creates new recommendations based on snapshots of the WHATWG standard.
getElementById
function as well as an event model and support for XML namespaces and CSS.To render a document such as a HTML page, most web browsers use an internal model similar to the DOM. The nodes of every document are organized in a tree structure, called the DOM tree, with the topmost node named as "Document object". When an HTML page is rendered in browsers, the browser downloads the HTML into local memory and automatically parses it to display the page on screen. However, the DOM does not necessarily need to be represented as a tree, [11] and some browsers have used other internal models. [12]
When a web page is loaded, the browser creates a Document Object Model of the page, which is an object oriented representation of an HTML document that acts as an interface between JavaScript and the document itself. This allows the creation of dynamic web pages, [13] because within a page JavaScript can:
A Document Object Model (DOM) tree is a hierarchical representation of an HTML or XML document. It consists of a root node, which is the document itself, and a series of child nodes that represent the elements, attributes, and text content of the document. Each node in the tree has a parent node, except for the root node, and can have multiple child nodes.
Elements in an HTML or XML document are represented as nodes in the DOM tree. Each element node has a tag name, attributes, and can contain other element nodes or text nodes as children. For example, an HTML document with the following structure:
<html><head><title>My Website</title></head><body><h1>Welcome</h1><p>This is my website.</p></body></html>
will be represented in the DOM tree as:
- Document (root) - html - head - title - "My Website" - body - h1 - "Welcome" - p - "This is my website."
Text content within an element is represented as a text node in the DOM tree. Text nodes do not have attributes or child nodes, and are always leaf nodes in the tree. For example, the text content "My Website" in the title element and "Welcome" in the h1 element in the above example are both represented as text nodes.
Attributes of an element are represented as properties of the element node in the DOM tree. For example, an element with the following HTML:
<ahref="https://example.com">Link</a>
will be represented in the DOM tree as:
- a - href: "https://example.com" - "Link"
The DOM tree can be manipulated using JavaScript or other programming languages. Common tasks include navigating the tree, adding, removing, and modifying nodes, and getting and setting the properties of nodes. The DOM API provides a set of methods and properties to perform these operations, such as getElementById
, createElement
, appendChild
, and innerHTML
.
// Create the root elementvarroot=document.createElement("root");// Create a child elementvarchild=document.createElement("child");// Add the child element to the root elementroot.appendChild(child);
Another way to create a DOM structure is using the innerHTML property to insert HTML code as a string, creating the elements and children in the process. For example:
document.getElementById("root").innerHTML="<child></child>";
Another method is to use a JavaScript library or framework such as jQuery, AngularJS, React, Vue.js, etc. These libraries provide a more convenient, eloquent and efficient way to create, manipulate and interact with the DOM.
It is also possible to create a DOM structure from an XML or JSON data, using JavaScript methods to parse the data and create the nodes accordingly.
Creating a DOM structure does not necessarily mean that it will be displayed in the web page, it only exists in memory and should be appended to the document body or a specific container to be rendered.
In summary, creating a DOM structure involves creating individual nodes and organizing them in a hierarchical structure using JavaScript or other programming languages, and it can be done using several methods depending on the use case and the developer's preference.
Because the DOM supports navigation in any direction (e.g., parent and previous sibling) and allows for arbitrary modifications, implementations typically buffer the document. [14] However, a DOM need not originate in a serialized document at all, but can be created in place vi the DOM API. Also, there have been implementations even before DOM itself, of equivalent structure with persistent disk representation and rapid access, for example DynaText's model disclosed in [15] and various database approaches.
Web browsers rely on layout engines to parse HTML into a DOM. Some layout engines, such as Trident/MSHTML, are associated primarily or exclusively with a particular browser, such as Internet Explorer. Others, including Blink, WebKit, and Gecko, are shared by a number of browsers, such as Google Chrome, Opera, Safari, and Firefox. The different layout engines implement the DOM standards to varying degrees of compliance.
DOM implementations:
APIs that expose DOM implementations:
Inspection tools:
Dynamic HTML, or DHTML, is a term which was used by some browser vendors to describe the combination of HTML, style sheets and client-side scripts that enabled the creation of interactive and animated documents. The application of DHTML was introduced by Microsoft with the release of Internet Explorer 4 in 1997.
JavaScript, often abbreviated as JS, is a programming language and core technology of the Web, alongside HTML and CSS. 99% of websites use JavaScript on the client side for webpage behavior.
Hypertext Markup Language (HTML) is the standard markup language for documents designed to be displayed in a web browser. It defines the content and structure of web content. It is often assisted by technologies such as Cascading Style Sheets (CSS) and scripting languages such as JavaScript, a programming language.
Extensible Markup Language (XML) is a markup language and file format for storing, transmitting, and reconstructing arbitrary data. It defines a set of rules for encoding documents in a format that is both human-readable and machine-readable. The World Wide Web Consortium's XML 1.0 Specification of 1998 and several other related specifications—all of them free open standards—define XML.
XSLT is a language originally designed for transforming XML documents into other XML documents, or other formats such as HTML for web pages, plain text or XSL Formatting Objects, which may subsequently be converted to other formats, such as PDF, PostScript and PNG. Support for JSON and plain-text transformation was added in later updates to the XSLT 1.0 specification.
In computing, the Java API for XML Processing (JAXP), one of the Java XML application programming interfaces (APIs), provides the capability of validating and parsing XML documents. It has three basic parsing interfaces:
SAX is an event-driven online algorithm for lexing and parsing XML documents, with an API developed by the XML-DEV mailing list. SAX provides a mechanism for reading data from an XML document that is an alternative to that provided by the Document Object Model (DOM). Where the DOM operates on the document as a whole—building the full abstract syntax tree of an XML document for convenience of the user—SAX parsers operate on each piece of the XML document sequentially, issuing parsing events while making a single pass through the input stream.
An HTML element is a type of HTML document component, one of several types of HTML nodes. The first used version of HTML was written by Tim Berners-Lee in 1993 and there have since been many versions of HTML. The current de facto standard is governed by the industry group WHATWG and is known as the HTML Living Standard.
Web standards are the formal, non-proprietary standards and other technical specifications that define and describe aspects of the World Wide Web. In recent years, the term has been more frequently associated with the trend of endorsing a set of standardized best practices for building web sites, and a philosophy of web design and development that includes those methods.
In web development, "tag soup" is a pejorative for HTML written for a web page that is syntactically or structurally incorrect. Web browsers have historically treated structural or syntax errors in HTML leniently, so there has been little pressure for web developers to follow published standards. Therefore there is a need for all browser implementations to provide mechanisms to cope with the appearance of "tag soup", accepting and correcting for invalid syntax and structure where possible.
A node is a basic unit of a data structure, such as a linked list or tree data structure. Nodes contain data and also may link to other nodes. Links between nodes are often implemented by pointers.
DOM Events are a signal that something has occurred, or is occurring, and can be triggered by user interactions or by the browser. Client-side scripting languages like JavaScript, JScript, VBScript, and Java can register various event handlers or listeners on the element nodes inside a DOM tree, such as in HTML, XHTML, XUL, and SVG documents.
Cross-browser compatibility is the ability of a website or web application to function across different browsers and degrade gracefully when browser features are absent or lacking.
The canvas element is part of HTML5 and allows for dynamic, scriptable rendering of 2D shapes and bitmap images. It is a low level, procedural model that updates a bitmap. HTML5 Canvas also helps in making 2D games.
jQuery is a JavaScript library designed to simplify HTML DOM tree traversal and manipulation, as well as event handling, CSS animations, and Ajax. It is free, open-source software using the permissive MIT License. As of August 2022, jQuery is used by 77% of the 10 million most popular websites. Web analysis indicates that it is the most widely deployed JavaScript library by a large margin, having at least three to four times more usage than any other JavaScript library.
HTML5 is a markup language used for structuring and presenting hypertext documents on the World Wide Web. It was the fifth and final major HTML version that is now a retired World Wide Web Consortium (W3C) recommendation. The current specification is known as the HTML Living Standard. It is maintained by the Web Hypertext Application Technology Working Group (WHATWG), a consortium of the major browser vendors.
The Web Hypertext Application Technology Working Group (WHATWG) is a community of people interested in evolving HTML and related technologies. The WHATWG was founded by individuals from Apple Inc., the Mozilla Foundation and Opera Software, leading Web browser vendors in 2004.
Extensible HyperText Markup Language (XHTML) is part of the family of XML markup languages which mirrors or extends versions of the widely used HyperText Markup Language (HTML), the language in which Web pages are formulated.
XPath is an expression language designed to support the query or transformation of XML documents. It was defined by the World Wide Web Consortium (W3C) in 1999, and can be used to compute values from the content of an XML document. Support for XPath exists in applications that support XML, such as web browsers, and many programming languages.
The Web platform is a collection of technologies developed as open standards by the World Wide Web Consortium and other standardization bodies such as the Web Hypertext Application Technology Working Group, the Unicode Consortium, the Internet Engineering Task Force, and Ecma International. It is the umbrella term introduced by the World Wide Web Consortium, and in 2011 it was defined as "a platform for innovation, consolidation and cost efficiencies" by W3C CEO Jeff Jaffe. Being built on The evergreen Web has allowed for the addition of new capabilities while addressing security and privacy risks. Additionally, developers are enabled to build interoperable content on a cohesive platform.
The Document Object Model is a platform- and language-neutral interface that will allow programs and scripts to dynamically access and update the content, structure and style of documents.
{{cite web}}
: CS1 maint: numeric names: authors list (link)However, the DOM does not specify that documents must be implemented as a tree or a grove, nor does it specify how the relationships among objects be implemented. The DOM is a logical model that may be implemented in any convenient manner.