Drug rash with eosinophilia and systemic symptoms

Last updated
Drug rash with eosinophilia and systemic symptoms
Other namesDrug reaction with eosinophilia and systemic symptoms, DRESS, DRESS syndrome, drug-induced hypersensitivity syndrome, DIHS, drug hypersensitivity syndrome, DHS, drug-induced delayed multiorgan hypersensitivity syndrome, DIDMOHS, (formerly) drug-induced pseudolymphoma
Specialty Immunology, dermatology   OOjs UI icon edit-ltr-progressive.svg

Drug rash with eosinophilia and systemic symptoms or drug reaction with eosinophilia and systemic symptoms (DRESS), also termed drug-induced hypersensitivity syndrome (DIHS), is a rare reaction to certain medications. It involves primarily a widespread skin rash, fever, swollen lymph nodes, and characteristic blood abnormalities such as an abnormally high level of eosinophils, low number of platelets, and increased number of atypical white blood cells (lymphocytes). However, DRESS is often complicated by potentially life-threatening inflammation of internal organs and the syndrome has about a 10% mortality rate. [1] Treatment consists of stopping the offending medication and providing supportive care. Systemic corticosteroids are commonly used as well but no controlled clinical trials have assessed the efficacy of this treatment. [2]

Contents

DRESS is classified as one form of severe cutaneous adverse reactions (SCARs). In addition to DRESS, SCARs includes four other drug-induced skin reactions: the Stevens–Johnson syndrome (SJS), toxic epidermal necrolysis (TEN), Stevens–Johnson/toxic epidermal necrolysis overlap syndrome (SJS/TEN) and acute generalized exanthematous pustulosis (AGEP). The SCARs disorders have similar disease mechanisms. New strategies are in use or development to screen individuals at risk for DRESS to aid them in avoiding medications that increase the risk of DRESS. Alternative medications are used in all individuals testing positive for these predispositions. [3]

Prior to 1996, there were numerous reports on individuals presenting with a medication-induced disorder now recognized as the DRESS syndrome. For example, anticonvulsants in the 1930s, phenytoin in 1950, and other medications in the ensuing years were reported to do so. The reports often named the disorder based on the medication evoking it, e.g. the anticonvulsant hypersensitivity syndrome, allopurinol hypersensitivity syndrome, and dapsone hypersensitivity syndrome. [4] In 1996, however, the term DRESS syndrome was coined in a report attempting to simplify the terminology and consolidate these various clearly related syndromes into a single underlying disorder. [5] [6]

Signs and symptoms

The symptoms of DRESS syndrome usually begin 2 to 6 weeks but uncommonly up to 8–16 weeks after exposure to an offending drug. Symptoms generally include fever, an often itchy rash which may be morbilliform or consist mainly of macules or plaques, facial edema (i.e. swelling, which is a hallmark of the disease), enlarged and sometimes painful lymph nodes, and other symptoms due to inflammation-based internal organ involvement, most commonly liver, less commonly kidney, lung, and heart, and rarely pancreas or other organs. [4] [7] Laboratory findings include increased blood eosinophil and atypical lymphocyte counts, elevated blood markers for systemic inflammation (e.g. erythrocyte sedimentation rate, C-reactive protein), and evidence of internal organ involvement. Liver involvement is detected by measuring blood levels of alanine aminotransferase (ALT), a marker of hepatocyte injury, and alkaline phosphatase (ALP), a marker of bile duct injury, to define three types of injury: hepatocellular (elevated ALP, high ALT/ALP ratio of greater than 5), cholestatic (high ALP, low ALT/ALP ratio of less than 2), and mixed (elevated ALT and ALP, ALT/ALP ratio between 2 and 5, the cutoff values for cholestatic and hepatocellular injury, respectively). Renal involvement is more prone to occur in older individuals and in those with prior kidney or cardiovascular disease; it may take the form of severe interstitial nephritis, acute tubular necrosis, or vasculitis and may lead to kidney failure and, uncommonly, be lethal. Lung involvement takes the form of interstitial pneumonitis, pleuritis, or the acute respiratory distress syndrome; minocycline and abacavir are the main culprit drugs causing severe lung involvement. However, lung involvement in this disorder typically resolves. Cardiac involvement usually presents with evidence of left ventricular dysfunction and ECG changes; it occurs more often in individuals taking minocycline, ampicillin, or sulfonamides, and is either a cardiac hypersensitivity reaction classified as an eosinophilic myocarditis which generally resolves or a far more serious acute necrotizing eosinophilic myocarditis which has a mortality rate of more than 50%. Neurological manifestations of the DRESS syndrome include headache, seizure, coma, and motor dysfunction due to meningitis or encephalitis. Rare manifestations of the disorder include inflammation of the pancreas, gastrointestinal tract, and spleen. [4] [8]

The following table gives the percentages for organ involvement and blood abnormalities found in individuals with the DRESS syndrome based on various studies. There are large variations in the percentages found in different studies and populations. [9] [4] [10] [11] [12]

OrganPercentage involvementCommentBlood abnormalityPercentage involvementComment
Liver59-100%>90% if based on high blood levels of ALT Eosinophilia30-95%usually seen in >66% of cases
Kidney8-40%>40% if based on high levels of BUN or creatinine Atypical blood lymphocytosis27-67%-
Lung5-33%usually resolves Lymphocytosis ~3%-
Heart (hypersensitivity reaction)2-15%generally not life-threatening Leukocytosis up to 100%due to eosinophilia and/or lymphocytosis
Heart (necrotizing eosinophilic myocarditis)2-15%mortality> 50% Thrombocytopenia 3%Thrombocytopenia may precede and not be due to DRESS syndrome [13]
Nervous system~5%usually resolvesElevated ESR ~60-70%marker of systemic inflammation
Pancreas~5%may result in diabetes Elevated C-reactive protein ~60%marker of systemic inflammation

No gold standard exists for diagnosis, and at least two diagnostic criteria have been proposed viz., the RegiSCAR criteria [14] and the Japanese consensus group criteria. [15] These two sets of criteria are detailed in the following table.

RegiSCAR inclusion criteria for DRESS syndrome: 3 of the 4 starred criteria are required for diagnosisJapanese consensus group diagnostic criteria for DIHS: 7 criteria are needed for diagnosis of DIHS or the first 5 criteria required for diagnosis of atypical DIHS.
Hospitalizationpruritic, macular erythema containing papules, pustules or vesicles (generally a Maculopapular rash), developing >3 weeks after starting suspected drug
Reaction suspected to be drug-relatedProlonged clinical symptoms 2 weeks after discontinuation of the suspected drug
Acute Rash*Fever > 38 °C
Fever > 38 °C*Liver abnormalities (ALT > 100 U/L) or other organ involvement
Lymphadenopathy in at least two sites* Leukocyte abnormalities
Involvement of at least one internal organ* Leukocytosis ( > 11 x 109/l)
Blood count abnormalities (lymphopenia or lymphocytosis*, eosinophilia*, thrombocytopenia*)Atypical lymphocytosis (>5%)
Severe nerve painLymphadenopathy
Human herpesvirus 6 reactivation

Causes

Medications

Drugs that commonly induce DRESS syndrome arranged according to intended clinical action include the following: [4] [16] [17] [18] [19] [20] [21]

Medications associated with the development of DRESS are often popular, widely used, and/or clinically important for the control of certain diseases. This is evident in the most commonly cited medications that cause the DRESS viz., allopurinol, sulfasalazine, and minocycline, as well as in prominent but less commonly cited causes of the disorder such as strontium ranelate, leflunomide, dapsone, and nonsteroidal anti-inflammatory drugs (diclofenac, celecoxib, ibuprofen, and phenylbutazone). [9]

Genetics

Studies have found that certain populations that express particular serotypes (i.e. alleles) of HLA-A, HLA-B, and/or HLA-C have an increased risk of developing the DRESS syndrome in response to specific medications. These associations include the following: [4] [22]

Pathophysiology

Human leukocyte antigens

Like other drug-induced SCARs disorders, the DRESS syndrome is a type IV hypersensitivity reaction in which a drug or its metabolite stimulates cytotoxic T cells (i.e. CD8+ T cells) or T helper cells (i.e. CD4+ T cells) to initiate autoimmune reactions that attack self tissues. DRESS syndrome is a SCARs type IV, subtype IVb reaction. This contrasts with SJS, SJS/TEN, and TEN which are type IV, subtype IVc reactions and AGEP which is a type IV subtype IVd reaction. DRESS syndrome therefore differs from the other SCARs disorders in that it involves the tissue-injuring action of CD4+ cells and the cell- and tissue-injuring action of eosinophils as well as the release of the following cytokines: Interleukins 5 and 13 which simulate the growth, longevity, and activation of eosinophils; Interleukin 4 which promotes the differentiation of naive helper T cells into Th2 helper cells that then serve to activate eosinophils as well as other types of pro-inflammatory cells; IFNγ which activates macrophages and induces the expression of Class II MHC molecules; and TNFα which promotes inflammation but also has cell-killing actions. [26] [27] [28]

Like other SCARs-inducing drugs, DRESS syndrome-inducing drugs or their metabolites stimulate CD8+ T or CD4+ T cells to initiate autoimmune responses. Studies indicate that the mechanism by which a drug or its metabolites accomplishes this stimulation involves subverting the antigen presentation pathways of the innate immune system. The drug or metabolite covalently binds with a host protein to form a non-self, drug-related epitope. An antigen-presenting cell (APC) takes up these alter proteins; digests them into small peptides; places the peptides in a groove on the human leukocyte antigen (i.e. HLA) component of their major histocompatibility complex (i.e. MHC); and presents the MHC-associated peptides to the T-cell receptor on CD8+ T or CD4+ T cells. Those peptides expressing a drug-related, non-self epitope on their HLA-A, HLA-B, HLA-C, HLA-DM, HLA-DO, HLA-DP, HLA-DQ, or HLA-DR proteins may bind to a T-cell receptor to stimulate the receptor-bearing parent T cell to initiate attacks on self tissues. Alternatively, a drug or metabolite may stimulate these T cells by inserting into the groove on a HLA protein to serve as a non-self epitope or bind outside of this groove to alter a HLA protein so that it forms a non-self epitope. Importantly, however, non-self epitopes must bind to specific HLA serotypes in order to stimulate T cells. Since the human population expresses some 13,000 different HLA serotypes while an individual expresses only a fraction of them and since a DRESSs-inducing drug or metabolite interacts with only one or a few HLA serotypes, a drug's ability to induce SCARs is limited to those individuals who express HLA serotypes targeted by the drug or its metabolite. [28] [29] Thus, only rare individuals are predisposed to develop SCARs in response to a particular drug on the basis of their expression of HLA serotypes. [30] Studies have identified several HLA serotypes associated with development of the DRESS syndrome in response to certain drugs, have developed tests to identify individuals who express some of these serotypes, and thereby have identified individuals who should avoid certain DRESS syndrome-inducing drugs. [26] [31]

T-cell receptors

A drug or its metabolite may also stimulate CD8+ T or CD4+ T cells to initiate autoimmune responses by directly binding to the T-cell receptors on these T cells. Again, this binding appears to develop only on certain T-cell receptors. Since the genes for these receptors are highly edited, i.e. altered to encode proteins with different amino acid sequences, and since the human population may express more than 100 trillion different (i.e. different amino acid sequences) T-cell receptors while an individual express only a fraction of these, a drug's or its metabolite's ability to induce the DRESS syndrome by interacting with a T-cell receptor is limited to those individuals whose T cells express a T-cell receptor(s) that can interact with drug or its metabolite. [28] [22] Thus, only rare individuals are predisposed to develop a SCARs disorder in response to a particular drug on the basis of their expression of specific cell receptor types. [30] While the evidence supporting these ideas is limited, one study identified the preferential presence of the TCR-V-b and complementarity-determining region 3 in T-cell receptors found on the T cells in the blisters of patients with allopurinol-induced DRESS syndrome. This finding is compatible with the notion that specific types of T-cell receptors are involved in the development of specific drug-induced SCARs. [31]

ADME

Variations in ADME, i.e. an individual's efficiency in absorbing, distributing, metabolizing, and excreting a drug has been found to occur in cases of the DRESS syndrome. These variations influence the levels and duration of a drug or drug metabolite in tissues and thereby impact the drug's or drug metabolite's ability to evoke the DRESS syndrome. [3] For example, the CYP2C9 gene codes for CYP2C9, a cytochrome P450 enzyme which metabolizes various substances including phenytoin. The CYP2CP*3 variant of CYP29C has reduced catalytic activity; individuals expressing this variant show an increased incidence of developing the DRESS syndrome when taking phenytoin apparently due to increases in the drug's blood and tissue levels. In a second example of a genetically based ADME defect causing SCARs, Japanese individuals bearing slow acetylating variants of the N-acetyltransferase 2 gene, (NAT2), viz., NAT2*6A and NAT2*7B, acetylate sulfasalazine more slowly than individuals homozygous for the wild type gene. Individuals expressing the NAT2*6A and NAT2*7 variants have an increased risk for developing DRESS syndrome-like reactions to this anti-inflammatory drug. [9] None-genetic ADME factors are also associated with increased risks of developing the DRESS syndrome. Allopurinol is metabolized to oxipurinol, a product with a far slower renal excretion rate than its parent compound. Renal impairment is associated with abnormally high blood levels of oxipurinol and an increased risk of developing the DRESS syndrome, particularly the more severe forms of this disorder. Dysfunction of the kidney and liver are also suggested to promote this disorder in response to other drugs due to the accumulation of SCARs-inducing drugs or metabolites in blood and tissues. [3] [32] [33] Currently, it is suspected that the expression of particular HLA proteins and T-cell receptors interact with ADME factors to promote SCARs particularly in their more serious forms. [3]

Viral reactivation

During the progression of the DRESS syndrome certain viruses that previously infected an individual and then became latent are reactivated and proliferate. Viruses known to do so include certain members of the Herpesviridae family of Herpes viruses viz., Epstein–Barr virus, human herpesvirus 6, human herpesvirus 7, and cytomegalovirus. Individuals with DRESS syndrome may exhibit sequential reactivation of these four viruses, typically in the order just given. Reactivation of these viruses is associated with a flare-up in symptoms, a prolonged course, and increased disease severity which includes significant organ involvement and the development of certain autoimmune diseases viz., systemic lupus erythematosus, autoimmune thyroiditis, and type 1 diabetes mellitus. While these viral reactivations, particularly of human herpes virus 6, have been suggested to be an important factor in the pathogenesis of the DRESS syndrome, studies to date have not clearly determined if they are a cause or merely a consequence of T cell-mediated tissue injury. [3] [4]

Preventative

Currently, screening individuals for the expression of certain HLA alleles before initiating treatment of patients with DRESS-inducing drugs is recommended. These recommendations typically apply only to specific populations that have a significant chance of expressing the indicated allele since screening of populations with extremely low incidences of expressing an allele is considered cost-ineffective. [34] Individuals expressing the HLA allele associated with sensitivity to an indicated drug should not be treated with the drug. These recommendations include: [3] [35]

Current trials are underway to evaluate the ability of genetic screening to prevent the DRESS syndrome for dapsone and HLA-B*13:01 in China and Indonesia. Similar trials are underway in Taiwan to prevent phenytoin-induced DRESS syndrome in individuals expressing the CYP2C9*3 allele of CYP2C9 as well as a series of HLA alleles. [35]

Treatment

Immediate discontinuance of the offending drug or drug(s) is the first and critical step in treating any SCARs disorder. In the past, the mainstay treatment of severe cases of DRESS syndrome was the use, often at high-dosage, of systemic glucocorticoids, relying on the anti-inflammatory actions of these drugs to suppress the eosinophil- and T cell-induced tissue damage caused by the disorder. However, there have been no randomized control trials reporting on the systemic use of these drugs. Rather, there are suggestions that treatment with systemic glucocorticoids is associated with a higher incidence of relapse compared to topical glucocorticoid treatment and may be associated with a higher rate of opportunistic infection. Accordingly, less severe cases of this disorder may be better treated conservatively with general support and, where needed, topical glucocorticoids. Severer cases, particularly those involving significant internal organ involvement, may require systemic corticosteroids and efforts to support heart, kidney, lung, or other organ dysfunctions. [4] [28]

Terminology

DRESS syndrome is one of several terms that have been used to describe a severe idiosyncratic reaction to a drug that is characterized by a long latency of onset after exposure to the offending medication, a rash, involvement of internal organs, hematologic abnormalities, and systemic illness. Other synonymous names and acronyms include drug-induced hypersensitivity syndrome (DIHS or DHiS), anticonvulsant hypersensitivity syndrome, drug-induced delayed multiorgan hypersensitivity syndrome, drug-induced pseudolymphoma, anticonvulsant hypersensitivity syndrome, allopurinol hypersensitivity syndrome, dapsone syndrome, and dapsone hypersensitivity syndrome. [1] [4] [5] [6]

See also

Related Research Articles

<span class="mw-page-title-main">Carbamazepine</span> Anticonvulsant medication

Carbamazepine, sold under the brand name Tegretol among others, is an anticonvulsant medication used in the treatment of epilepsy and neuropathic pain. It is used as an adjunctive treatment in schizophrenia along with other medications and as a second-line agent in bipolar disorder. Carbamazepine appears to work as well as phenytoin and valproate for focal and generalized seizures. It is not effective for absence or myoclonic seizures.

Stevens–Johnson syndrome (SJS) is a type of severe skin reaction. Together with toxic epidermal necrolysis (TEN) and Stevens–Johnson/toxic epidermal necrolysis (SJS/TEN) overlap, they are considered febrile mucocutaneous drug reactions and probably part of the same spectrum of disease, with SJS being less severe. Erythema multiforme (EM) is generally considered a separate condition. Early symptoms of SJS include fever and flu-like symptoms. A few days later, the skin begins to blister and peel, forming painful raw areas. Mucous membranes, such as the mouth, are also typically involved. Complications include dehydration, sepsis, pneumonia and multiple organ failure.

<span class="mw-page-title-main">Eosinophilia</span> Excess number of eosinophil cells in the blood

Eosinophilia is a condition in which the eosinophil count in the peripheral blood exceeds 5×108/L (500/μL). Hypereosinophilia is an elevation in an individual's circulating blood eosinophil count above 1.5 × 109/L (i.e. 1,500/μL). The hypereosinophilic syndrome is a sustained elevation in this count above 1.5 × 109/L (i.e. 1,500/μL) that is also associated with evidence of eosinophil-based tissue injury.

<span class="mw-page-title-main">Allopurinol</span> Medication

Allopurinol is a medication used to decrease high blood uric acid levels. It is specifically used to prevent gout, prevent specific types of kidney stones and for the high uric acid levels that can occur with chemotherapy. It is taken orally or intravenously.

<span class="mw-page-title-main">Dapsone</span> Antibiotic medication

Dapsone, also known as 4,4'-sulfonyldianiline (SDA) or diaminodiphenyl sulfone (DDS), is an antibiotic commonly used in combination with rifampicin and clofazimine for the treatment of leprosy. It is a second-line medication for the treatment and prevention of pneumocystis pneumonia and for the prevention of toxoplasmosis in those who have poor immune function. Additionally, it has been used for acne, dermatitis herpetiformis, and various other skin conditions. Dapsone is available both topically and by mouth.

<span class="mw-page-title-main">Toxic epidermal necrolysis</span> Severe skin reaction

Toxic epidermal necrolysis (TEN), also known as Lyell's syndrome, is a type of severe skin reaction. Together with Stevens–Johnson syndrome (SJS) it forms a spectrum of disease, with TEN being more severe. Early symptoms include fever and flu-like symptoms. A few days later the skin begins to blister and peel forming painful raw areas. Mucous membranes, such as the mouth, are also typically involved. Complications include dehydration, sepsis, pneumonia, and multiple organ failure.

<span class="mw-page-title-main">HLA-B</span> Protein-coding gene in the species Homo sapiens

HLA-B is a human gene that provides instructions for making a protein that plays a critical role in the immune system. HLA-B is part of a family of genes called the human leukocyte antigen (HLA) complex. The HLA complex helps the immune system distinguish the body's own proteins from proteins made by foreign invaders such as viruses and bacteria.

A drug allergy is an allergy to a drug, most commonly a medication, and is a form of adverse drug reaction. Medical attention should be sought immediately if an allergic reaction is suspected.

<span class="mw-page-title-main">HLA-B58</span> Human leukocyte antigen serotype

HLA-B58 (B58) is an HLA-B serotype. B58 is a split antigen from the B17 broad antigen, the sister serotype B57. The serotype identifies the more common HLA-B*58 gene products. B*5801 is associated with allopurinol induced inflammatory necrotic skin disease.

<span class="mw-page-title-main">HLA-B57</span> Human leukocyte antigen serotype

HLA-B57 (B57) is an HLA-B serotype. B57 is a split antigen from the B17 broad antigen, the sister serotype being B58. The serotype identifies the more common HLA-B*57 gene products. Like B58, B57 is involved in drug-induced inflammatory skin disorders.

<span class="mw-page-title-main">HLA-B75</span> Human leukocyte antigen serotype

HLA-B75 (B75) is an HLA-B serotype. The serotype identifies certain B*15 gene-allele protein products of HLA-B.

<span class="mw-page-title-main">Drug eruption</span> Medical condition

In medicine, a drug eruption is an adverse drug reaction of the skin. Most drug-induced cutaneous reactions are mild and disappear when the offending drug is withdrawn. These are called "simple" drug eruptions. However, more serious drug eruptions may be associated with organ injury such as liver or kidney damage and are categorized as "complex". Drugs can also cause hair and nail changes, affect the mucous membranes, or cause itching without outward skin changes.

Anticonvulsant/sulfonamide hypersensitivity syndrome is a potentially serious hypersensitivity reaction that can be seen with medications with an aromatic amine chemical structure, such as aromatic anticonvulsants, sulfonamides, or other medications with an aromatic amine. Cross-reactivity should not occur between medications with an aromatic amine and medications without an aromatic amine ; therefore, these medications can be safely used in the future.

<span class="mw-page-title-main">Allopurinol hypersensitivity syndrome</span> Medical condition

Allopurinol hypersensitivity syndrome(AHS) typically occurs in persons with preexisting kidney failure. Weeks to months after allopurinol is begun, the patient develops a morbilliform eruption or, less commonly, develops one of the far more serious and potentially lethal severe cutaneous adverse reactions viz., the DRESS syndrome, Stevens Johnson syndrome, or toxic epidermal necrolysis. About 1 in 1000 patients receiving allopurinol are affected, and mortality rates have been reported to be between 20% and 25%.

<span class="mw-page-title-main">Acute generalized exanthematous pustulosis</span> Medical condition

Acute generalized exanthematous pustulosis (AGEP) is a rare skin reaction that in 90% of cases is related to medication.

<span class="mw-page-title-main">Eslicarbazepine acetate</span> Anticonvulsant medication

Eslicarbazepine acetate (ESL), sold under the brand names Aptiom and Zebinix among others, is an anticonvulsant medication approved for use in Europe and the United States as monotherapy or as additional therapy for partial-onset seizures epilepsy.

Eosinophilic myocarditis is inflammation in the heart muscle that is caused by the infiltration and destructive activity of a type of white blood cell, the eosinophil. Typically, the disorder is associated with hypereosinophilia, i.e. an eosinophil blood cell count greater than 1,500 per microliter. It is distinguished from non-eosinophilic myocarditis, which is heart inflammation caused by other types of white blood cells, i.e. lymphocytes and monocytes, as well as the respective descendants of these cells, NK cells and macrophages. This distinction is important because the eosinophil-based disorder is due to a particular set of underlying diseases and its preferred treatments differ from those for non-eosinophilic myocarditis.

Lymphocyte-variant hypereosinophilia is a rare disorder in which eosinophilia or hypereosinophilia is caused by an aberrant population of lymphocytes. These aberrant lymphocytes function abnormally by stimulating the proliferation and maturation of bone marrow eosinophil-precursor cells termed colony forming unit-eosinophils or CFU-Eos.

Severe cutaneous adverse reactions are a group of potentially lethal adverse drug reactions that involve the skin and mucous membranes of various body openings such as the eyes, ears, and inside the nose, mouth, and lips. In more severe cases, SCARs also involves serious damage to internal organs. SCARs includes five syndromes: Drug reaction with eosinophilia and systemic symptoms ; Stevens–Johnson syndrome (SJS); Toxic epidermal necrolysis (TEN), Stevens-Johnson/toxic epidermal necrolysis overlap syndrome (SJS/TEN); and Acute generalized exanthematous pustulosis (AGEP). The five disorders have similar pathophysiologies, i.e. disease-causing mechanisms, for which new strategies are in use or development to identify individuals predisposed to develop the SCARs-inducing effects of specific drugs and thereby avoid treatment with them. Maculopapular rash (MPR) is a less-well defined and benign form of drug-induced adverse skin reactions; while not classified in the SCARs group, it shares a similar pathophysiology with SCARs and is caused by some of the same drugs which cause SCARs.

The p-i concept refers to the pharmacological interaction of drugs with immune receptors. It explains a form of drug hypersensitivity, namely T cell stimulation, which can lead to various acute inflammatory manifestations such as exanthems, eosinophilia and systemic symptoms, Stevens–Johnson syndrome, toxic epidermal nercrolysis, and complications upon withdrawing the drug.

References

  1. 1 2 Walsh SA, Creamer D (January 2011). "Drug reaction with eosinophilia and systemic symptoms (DRESS): a clinical update and review of current thinking". Clinical and Experimental Dermatology. 36 (1): 6–11. doi:10.1111/j.1365-2230.2010.03967.x. PMID   21143513. S2CID   16048518.
  2. Ganeva M, et al. (2008). "Carbamazepine-induced drug reaction with eosinophilia and systemic symptoms (DRESS) syndrome: report of four cases and brief review". International Journal of Dermatology. 47 (8): 853–860. doi:10.1111/j.1365-4632.2008.03637.x. PMID   18717872. S2CID   34572606.
  3. 1 2 3 4 5 6 Adler NR, Aung AK, Ergen EN, Trubiano J, Goh MS, Phillips EJ (2017). "Recent advances in the understanding of severe cutaneous adverse reactions". The British Journal of Dermatology. 177 (5): 1234–1247. doi:10.1111/bjd.15423. PMC   5582023 . PMID   28256714.
  4. 1 2 3 4 5 6 7 8 9 Cho YT, Yang CW, Chu CY (2017). "Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS): An Interplay among Drugs, Viruses, and Immune System". International Journal of Molecular Sciences. 18 (6): 1243. doi: 10.3390/ijms18061243 . PMC   5486066 . PMID   28598363.
  5. 1 2 Bocquet H, Bagot M, Roujeau JC (December 1996). "Drug-induced pseudolymphoma and drug hypersensitivity syndrome (Drug Rash with Eosinophilia and Systemic Symptoms: DRESS)". Semin Cutan Med Surg. 15 (4): 250–7. doi:10.1016/S1085-5629(96)80038-1. PMID   9069593.
  6. 1 2 Saltzstein SL, Ackerman LV (1959). "Lymphadenopathy induced by anticonvulsant drugs and mimicking clinically pathologically malignant lymphomas". Cancer. 12 (1): 164–82. doi: 10.1002/1097-0142(195901/02)12:1<164::AID-CNCR2820120122>3.0.CO;2-Y . PMID   13618867. S2CID   27319054.
  7. Corneli HM (2017). "DRESS Syndrome: Drug Reaction With Eosinophilia and Systemic Symptoms". Pediatric Emergency Care. 33 (7): 499–502. doi:10.1097/PEC.0000000000001188. PMID   28665896.
  8. Thongsri T, Chularojanamontri L, Pichler WJ (March 2017). "Cardiac involvement in DRESS syndrome". Asian Pacific Journal of Allergy and Immunology. 35 (1): 3–10. doi:10.12932/AP0847. PMID   27996289.
  9. 1 2 3 Adwan MH (2017). "Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS) Syndrome and the Rheumatologist". Current Rheumatology Reports. 19 (1): 3. doi:10.1007/s11926-017-0626-z. PMID   28138822. S2CID   10549742.
  10. Chen, YC; Chiu, HC; Chu, CY (2010). "Drug reaction with eosinophilia and systemic symptoms: A retrospective study of 60 cases". Arch Dermatol. 146 (12): 1373–9. doi:10.1001/archdermatol.2010.198. PMID   20713773.
  11. Spriet S, Banks TA (2015). "Drug reaction with eosinophilia and systemic symptoms syndrome". Allergy and Asthma Proceedings. 36 (6): 501–5. doi:10.2500/aap.2015.36.3903. PMID   26534757.
  12. Nam YH, Park MR, Nam HJ, Lee SK, Kim KH, Roh MS, Um SJ, Son CH (2015). "Drug reaction with eosinophilia and systemic symptoms syndrome is not uncommon and shows better clinical outcome than generally recognised". Allergologia et Immunopathologia. 43 (1): 19–24. doi:10.1016/j.aller.2013.08.003. PMID   24388810.
  13. Sauvetre G, MahÉvas M, Limal N, Guillaud C, Khellaf M, Bierling P, Languille L, Delbos F, Noizat-Pirenne F, Michel M, Godeau B (October 2015). "Cutaneous rash and dapsone-induced hypersensitivity syndrome a common manifestation in adult immune thrombocytopenia. Presentation and outcome in 16 cases". American Journal of Hematology. 90 (10): E201–2. doi: 10.1002/ajh.24068 . PMID   26120067.
  14. Kardaun SH, Sidoroff A, Valeyrie-Allanore L, et al. (2007). "Variability in the clinical pattern of cutaneous side-effects of drugs with systemic symptoms: does a DRESS syndrome really exist?". Response Br J Dermatol. 156 (3): 609–610. doi:10.1111/j.1365-2133.2006.07704.x. PMID   17300272. S2CID   32299525.
  15. Shiohara T, Iijima M, Ikezawa Z, Hashimoto K (2007). "The diagnosis of DRESS syndrome has been sufficiently established on the basis of typical clinical features and viral reactivations". Response Br J Dermatol. 156 (5): 1045–92. doi:10.1111/j.1365-2133.2007.07807.x. PMID   17381452. S2CID   33786375.
  16. Allam, JP; Paus T; Reichel C; et al. (Sep–Oct 2004). "DRESS syndrome associated with carbamazepine and phenytoin". European Journal of Dermatology. 14 (5): 339–342. PMID   15358574.
  17. "Tetracycline (doxycycline, minocycline)".
  18. Markel, A (October 2005). "Allopurinol-induced DRESS syndrome" (PDF). Israel Medical Association Journal. 7 (10): 656–660. PMID   16259349. Archived from the original (PDF) on 2020-11-28. Retrieved 2009-02-03.
  19. "Ziprasidone (Marketed as Geodon and Generics): Drug Safety Communication - Rare But Potentially Fatal Skin Reactions". Food and Drug Administration . 11 December 2014.
  20. Blumenthal, Kimberly G.; Patil, Sarita U.; Long, Aidan A. (2012-04-01). "The importance of vancomycin in drug rash with eosinophilia and systemic symptoms (DRESS) syndrome". Allergy and Asthma Proceedings. 33 (2): 165–171. doi:10.2500/aap.2012.33.3498. ISSN   1539-6304. PMID   22525393.
  21. "Olanzapine: Drug Safety Communication - FDA Warns About Rare But Serious Skin Reactions". Food and Drug Administration . 10 May 2016.
  22. 1 2 Garon SL, Pavlos RK, White KD, Brown NJ, Stone CA, Phillips EJ (September 2017). "Pharmacogenomics of off-target adverse drug reactions". British Journal of Clinical Pharmacology. 83 (9): 1896–1911. doi:10.1111/bcp.13294. PMC   5555876 . PMID   28345177.
  23. Pavlos R, Mckinnon E, Ostrov D, Peters B, Buus S, Koelle D, Chopra A, Schutte R, Rive C, Redwood A, Restrepo S, Bracey A, Kaever T, Myers P, Speers E, Malaker S, Shabanowitz J, Yuan J, Gaudieri S, Hunt D, Carrington M, Haas D, Mallal S, Phillips E (2017). "Shared peptide binding of HLA class I and II alleles associate with cutaneous nevirapine hypersensitivity and identify novel risk alleles". Scientific Reports. 7 (1): 8653. Bibcode:2017NatSR...7.8653P. doi: 10.1038/s41598-017-08876-0 . PMC   5561238 . PMID   28819312.
  24. Mallal S, Phillips E, Carosi G, et al. (2008). "for the PREDICT-1 Study Team. HLA-B*5701 screening for abacavir hypersensitivity". N Engl J Med. 358 (6): 568–579. doi: 10.1056/nejmoa0706135 . PMID   18256392.
  25. Konvinse KC, Trubiano JA, Pavlos R, James I, Shaffer CM, Bejan CA, Schutte RJ, Ostrov DA, Pilkinton MA, Rosenbach M, Zwerner JP, Williams KB, Bourke J, Martinez P, Rawandamuriye F, Chopra A, Watson M, Redwood AJ, White KD, Mallal SA, Phillips EJ (2019). "HLA-A*32:01 is strongly associated with vancomycin-induced drug reaction with eosinophilia and systemic symptoms". J Allergy Clin Immunol. 144 (1): 183–192. doi:10.1016/j.jaci.2019.01.045. PMC   6612297 . PMID   30776417.
  26. 1 2 Hoetzenecker W, Nägeli M, Mehra ET, Jensen AN, Saulite I, Schmid-Grendelmeier P, Guenova E, Cozzio A, French LE (2016). "Adverse cutaneous drug eruptions: current understanding". Seminars in Immunopathology. 38 (1): 75–86. doi:10.1007/s00281-015-0540-2. PMID   26553194. S2CID   333724.
  27. Feldmeyer L, Heidemeyer K, Yawalkar N (2016). "Acute Generalized Exanthematous Pustulosis: Pathogenesis, Genetic Background, Clinical Variants and Therapy". International Journal of Molecular Sciences. 17 (8): 1214. doi: 10.3390/ijms17081214 . PMC   5000612 . PMID   27472323.
  28. 1 2 3 4 Duong TA, Valeyrie-Allanore L, Wolkenstein P, Chosidow O (2017). "Severe cutaneous adverse reactions to drugs". Lancet. 390 (10106): 1996–2011. doi:10.1016/S0140-6736(16)30378-6. PMID   28476287. S2CID   9506967.
  29. Bachelez H (January 2018). "Pustular psoriasis and related pustular skin diseases". The British Journal of Dermatology. 178 (3): 614–618. doi:10.1111/bjd.16232. PMID   29333670. S2CID   4436573.
  30. 1 2 Pichler WJ, Hausmann O (2016). "Classification of Drug Hypersensitivity into Allergic, p-i, and Pseudo-Allergic Forms". International Archives of Allergy and Immunology. 171 (3–4): 166–179. doi: 10.1159/000453265 . PMID   27960170.
  31. 1 2 Wang CW, Dao RL, Chung WH (2016). "Immunopathogenesis and risk factors for allopurinol severe cutaneous adverse reactions". Current Opinion in Allergy and Clinical Immunology. 16 (4): 339–45. doi:10.1097/ACI.0000000000000286. PMID   27362322. S2CID   9183824.
  32. Chung WH, Wang CW, Dao RL (2016). "Severe cutaneous adverse drug reactions". The Journal of Dermatology. 43 (7): 758–66. doi:10.1111/1346-8138.13430. PMID   27154258. S2CID   45524211.
  33. Lerch M, Mainetti C, Terziroli Beretta-Piccoli B, Harr T (2017). "Current Perspectives on Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis". Clinical Reviews in Allergy & Immunology. 54 (1): 147–176. doi:10.1007/s12016-017-8654-z. PMID   29188475. S2CID   46796285.
  34. Chong HY, Mohamed Z, Tan LL, Wu DB, Shabaruddin FH, Dahlui M, Apalasamy YD, Snyder SR, Williams MS, Hao J, Cavallari LH, Chaiyakunapruk N (2017). "Is universal HLA-B*15:02 screening a cost-effective option in an ethnically diverse population? A case study of Malaysia". The British Journal of Dermatology. 177 (4): 1102–1112. doi:10.1111/bjd.15498. PMC   5617756 . PMID   28346659.
  35. 1 2 Su SC, Hung SI, Fan WL, Dao RL, Chung WH (2016). "Severe Cutaneous Adverse Reactions: The Pharmacogenomics from Research to Clinical Implementation". International Journal of Molecular Sciences. 17 (11): 1890. doi: 10.3390/ijms17111890 . PMC   5133889 . PMID   27854302.

Further reading