Habitability, Brine Irradiation and Temperature

Last updated
Habitability, Brine Irradiation and Temperature
OperatorESA/Roscosmos
ManufacturerOmnisys Instruments AB [1]
Instrument typeTechnology demonstration for IRSU
FunctionHabitability assessment, and harvest atmospheric water on Mars
Mission durationPlanned: ≥ 1 Earth year [2]
Host spacecraft
Spacecraft Kazachok
Operator ESA & Roscosmos
Launch date2028 [3]
Rocket Proton-M/Briz-M
Launch site Baikonur

Habitability, Brine Irradiation and Temperature (HABIT) is an instrument designed to harvest water from the Mars atmosphere, an experiment that might pave the way to future water farms on Mars. [4] As part of ESA's ExoMars-2 mission, [2] the instrument was planned to be placed on board the Kazachok lander. [5] The launch of ExoMars-2 has been postponed to 2028. [3]

Contents

Instrument description

HABIT is composed of two major components: BOTTLE (Brine Observation Transition to Liquid Experiment) and ENVPACK (Environmental Package). BOTTLE contains six containers protected by HEPA filters, filled with salts that will collect atmospheric water through deliquescence. Sensors in each container will measure hydration and a state in which brine formed. Salts in the instrument can be dehydrated to allow indefinite operations of the instrument.[ citation needed ]

ENVPACK will contain instruments measuring ultraviolet irradiance, ground temperature, and a temperature of the atmosphere in three different directions. Most of the ENVPACK instruments were already used in Rover Environmental Monitoring Station of the NASA's Curiosity rover. [6] The Principal Investigator of HABIT is Javier Martin-Torres. [2]

Scientific objectives

The objectives of HABIT are: [5] [2]

The HABIT instrument will use salts to absorb 5 millilitres of water from the atmosphere each day, and can hold 25 mL in total. If the process works as expected, the technology could be scaled up to provide water for future crewed missions. [4]

References

  1. "Omnisys to deliver instrument for the next Mars expedition". Omnisys Instruments. 12 February 2016. Retrieved 13 March 2020.
  2. 1 2 3 4 "ExoMars 2022 surface platform". ESA. 12 March 2020. Retrieved 13 March 2020.
  3. 1 2 "ExoMars: Back on track for the Red Planet".
  4. 1 2 Aron, Jacob (9 December 2015). "Mars moisture-farming mission gets approval for 2018 launch". New Scientist . Retrieved 22 February 2016.
  5. 1 2 "Swedish Mars instrument selected by ESA". Luleå University of Technology . 2 December 2015. Retrieved 5 December 2015.
  6. "Instrument – Atmospheric Science Group". Luleå University of Technology . Retrieved 22 February 2016.[ dead link ]