Machine code |
---|
General concepts |
Instructions |
In computer science, a NOP, no-op, or NOOP (pronounced "no op"; short for no operation) is a machine language instruction and its assembly language mnemonic, programming language statement, or computer protocol command that does nothing.
Some computer instruction sets include an instruction whose explicit purpose is to not change the state of any of the programmer-accessible registers, status flags, or memory. It often takes a well-defined number of clock cycles to execute. In other instruction sets, there is no explicit NOP instruction, but the assembly language mnemonic NOP represents an instruction which acts as a NOP; e.g., on the SPARC, sethi 0, %g0
.
A NOP must not access memory, as that could cause a memory fault or page fault.
A NOP is most commonly used for timing purposes, to force memory alignment, to prevent hazards, to occupy a branch delay slot, to render void an existing instruction such as a jump, as a target of an execute instruction, or as a place-holder to be replaced by active instructions later on in program development (or to replace removed instructions when reorganizing would be problematic or time-consuming). In some cases, a NOP can have minor side effects; for example, on the Motorola 68000 series of processors, the NOP opcode causes a synchronization of the pipeline. [1]
Listed below are the NOP instruction for some CPU architectures:
CPU architecture | Instruction mnemonic | Bytes | Opcode | Notes |
---|---|---|---|---|
Intel x86 CPU family | NOP | 1 | 0x90 [2] | 0x90 is the one-byte encoding for XCHG AX,AX in 16-bit code and XCHG EAX,EAX in 32-bit code. In long mode, XCHG RAX,RAX requires two bytes, as it would begin with an REX.W prefix, making the encoding 0x48 0x90. However, 0x90 is interpreted as a NOP in long mode regardless of whether it is preceded by 0x48. [2] |
multi-byte NOP | 2–9 for Pentium Pro and later Intel processors, and all AMD AMD64 processors | 0x66 0x90 0x0F 0x1F 0x00 0x0F 0x1F 0x40 0x00 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 [2] | 0x66 is the operand-size override prefix. 0x0F 0x1F is a two-byte NOP opcode that takes a ModRM operand upon which no operation is performed; 0x00 is [EAX] , 0x40 0x00 is [EAX + 00H] , 0x44 0x00 0x00 is [EAX + EAX*1 + 00H] , 0x80 0x00 0x00 0x00 0x00 is [EAX + 00000000H] , and 0x84 0x00 0x00 0x00 0x00 0x00 is [EAX + EAX*1 + 00000000H] . [2] | |
Intel 8008 | LAA | 1 | 0xC0 | Load A from A |
Intel 8051 / MCS-51 family | NOP | 1 | 0x00 | |
Intel 8080, Intel 8085, Z80 | NOP | 1 | 0x00 | |
DEC Alpha | NOP | 4 | 0x47FF041F | Opcode for BIS r31,r31,r31 , an instruction that bitwise-ORs the always-0 register with itself. |
AMD 29k | NOP | 4 | 0x70400101 | Opcode for aseq 0x40,gr1,gr1 , an instruction that asserts that the stack register is equal to itself. [3] |
ARM A32 | NOP | 4 | 0x00000000 | This stands for andeq r0, r0, r0 . The assembly instruction nop will most likely expand to mov r0, r0 which is encoded 0xE1A00000 (little-endian architecture). [4] |
ARM T32 (16 bit) | NOP | 2 | 0xb000 | Opcode for ADD SP, #0 - Add zero to the stack pointer (No operation). The assembly instruction nop will most likely expand to mov r8, r8 which is encoded 0x46C0. [5] |
ARM T32 (32 bit) | NOP | 4 | 0xF3AF 8000 | |
ARM A64 (64 bit) | NOP | 4 | 0xD503201F | |
AVR | NOP | 2 | 0x0000 | one clock cycle |
IBM System/360, IBM System/370, IBM System/390, z/Architecture, UNIVAC Series 90 | NOP | 4 | 0x47000000 or 0x470nnnnn or 0x47n0nnnn where "n" is any 4-bit value. | The NOP ("No-Op") and NOPR ("No-Op Register") are a subset of the "Branch on Condition" or "Branch on Condition Register" instructions, respectively; both versions have two options for generating a NO-OP. In the case of both the NOP and NOPR instructions, the first 0 in the second byte is the "mask" value, the condition to test such as equal, not equal, high, low, etc. If the mask is 0, no branch occurs. In the case of the NOPR instruction, the second value in the second byte is the register to branch on. If register 0 is chosen, no branch occurs regardless of the mask value. Thus, if either of the two values in the second byte is 0, the branch will not happen. In the case of the NOP instruction, the second value in the second byte is the "base" register of a combined base register, displacement register and offset address. If the base register is also 0, the branch is not taken regardless of the value of the displacement register or displacement address. |
NOPR | 2 | 0x0700 or 0x070n or 0x07n0 where "n" is any 4-bit value. | ||
SuperH | NOP | 2 | 0x0009 | |
MIPS | NOP | 4 | 0x00000000 | Stands for sll r0,r0,0 , meaning: Logically shift register 0 zero bits to the left and store the result in register 0. Writes to register 0 are ignored; it always contains 0. |
MIPS-X | NOP | 4 | 0x60000019 | (extended opcode for add r0,r0,r0 ) |
MIX | NOP | 1 word | ± * * * * 0 | The * bytes are arbitrary, and can be anything from 0 to the maximum byte (required to be in the range 63-99). MIX uses sign-magnitude representation. |
MMIX | SWYM | 4 | 0xFD****** | SWYM stands for "Sympathize with your machinery". The * digits can be chosen arbitrarily. |
Motorola 6800 | NOP | 1 | 0x01 | |
Motorola 68000 family | NOP | 2 | 0x4E71 | This synchronizes the pipeline and prevents instruction overlap. [1] |
Motorola 6809 | NOP | 1 | 0x12 | |
MOS Technology 65xx (e.g. 6502) | NOP | 1 | 0xEA | NOP consumes two clock cycles. Undefined opcodes in the NMOS versions of the 65xx family were converted to be NOPs of varying instruction lengths and cycle times in the 65C02. |
PA-RISC | NOP | 4 | 0x08000240 | Opcode for OR 0,0,0 . [6] |
LDI 26,0 | 4 | 0x34000034 | Palindromic NOP - that is, an instruction that executes as NOP regardless of whether byte order is interpreted as little-endian or big-endian. Some PA-RISC system instructions are required to be followed by seven palindromic NOPs. [6] | |
PowerPC | NOP | 4 | 0x60000000 | (extended opcode for ori r0,r0,0 ) |
PIC microcontroller | NOP | 12 bits | 0b000000000000 | |
RISC-V | NOP | 4 | 0x00000013 | ADDI x0, x0, 0 |
C.NOP | 2 | 0x0001 | C.ADDI x0, 0 . Only available on RISC-V CPUs that support the "C" (compressed instructions) extension. [7] | |
Signetics 8X300 | MOV AUX, AUX | 16 bits | 0x0000 | Move AUX to AUX with no rotate |
SPARC | NOP | 4 | 0x01000000 | Stands for sethi 0, %g0 which zeroes the hardwired-to-zero %g0 register [8] |
PDP-10 | JFCL 0, (conventional)JUMP, SETA, SETAI, CAI, TRN, TLN | 1 word | 25500******* (octal) | Jump never Jump never, set nothing, skip never |
PDP-11 | NOP | 2 | 000240 (octal) | Clear none of the condition codes |
VAX | NOP | 1 | 0x01 | Delay is dependent on processor type |
WD16 | NOP | 2 | 0x0000 |
From a hardware design point of view, unmapped areas of a bus are often designed to return zeroes; since the NOP slide behavior is often desirable, it gives a bias to coding it with the all-zeroes opcode.
A function or a sequence of programming language statements is a NOP or null statement if it has no effect. Null statements may be required by the syntax of some languages in certain contexts.
In Ada, the null
statement serves as a NOP. [9] As the syntax forbids that control statements or functions be empty, the null
statement must be used to specify that no action is required. (Thus, if the programmer forgets to write a sequence of statements, the program will fail to compile.)
The simplest NOP statement in C is the null statement, which is just a semi-colon in a context requiring a statement.
Be aware that your C-compiler is going to ignore null statements, which has historical and performance reasons.
;
An empty block (compound statement) is also a NOP, and may be more legible, but will still be ignored by the compiler.:
{}
In some cases, such as the body of a function, a block must be used, but this can be empty. In C, statements cannot be empty—simple statements must end with a ; (semicolon) while compound statements are enclosed in {} (braces), which does not itself need a following semicolon. Thus in contexts where a statement is grammatically required, some such null statement can be used.
The null statement is useless by itself, but it can have a syntactic use in a wider context, e.g., within the context of a loop:
while(getchar()!='\n'){}
alternatively,
while(getchar()!='\n');
or more tersely:
while(getchar()!='\n');
(note that the last form may be confusing, and as such generates a warning with some compilers or compiler options, as semicolon usually indicates an end of function call instruction when placed after a parenthesis on the end of line).
The above code continues calling the function getchar() until it returns a \n (newline) character, essentially fast-forwarding the current reading location of standard input to the beginning of next line.
In Fortran, the CONTINUE
statement is used in some contexts such as the last statement in a DO loop, although it can be used anywhere, and does not have any functionality.
The JavaScript language does not have a built-in NOP statement. Many implementations are possible:
;
empty statement [10] or the {}
empty block statement the same way as in the C and derivatives examples;undefined
or the null
expression as a complete statement (an expression statement) when the previous methods are not allowed by the syntax.Alternatives, in situations where a function is required, are:
Function.prototype()
built-in function, that accepts any arguments and returns undefined
; [11] constnoop=()=>{};
The AngularJS framework provides angular.noop function that performs no operations.
The jQuery library provides a function jQuery.noop()
, which does nothing. [12]
The Lodash library provides a function _.noop()
, which returns undefined and does nothing. [13]
As with C, the ; used by itself can be used as a null statement in Pascal. In fact, due to the specification of the language, in a BEGIN / END block, the semicolon is optional before the END statement, thus a semicolon used there is superfluous.
Also, a block consisting of BEGIN END;
may be used as a placeholder to indicate no action, even if placed inside another BEGIN / END block.
The Python programming language has a pass
statement which has no effect when executed and thus serves as a NOP. It is primarily used to ensure correct syntax due to Python's indentation-sensitive syntax; for example the syntax for definition of a class requires an indented block with the class logic, which has to be expressed as pass
when it should be empty.
The ':
' [colon] command is a shell builtin that has similar effect to a "NOP" (a do-nothing operation). It is not technically an NOP, as it changes the special parameter $? (exit status of last command) to 0. It may be considered a synonym for the shell builtin 'true', and its exit status is true (0). [14] [15] [16]
The TeX typographical system's macro language has the \relax
command. [17] It does nothing by itself, but may be used to prevent the immediately preceding command from parsing any subsequent tokens. [18]
Many computer protocols, such as telnet, include a NOP command that a client can issue to request a response from the server without requesting any other actions. Such a command can be used to ensure the connection is still alive or that the server is responsive. A NOOP command is part of the following protocols (this is a partial list):
Note that unlike the other protocols listed, the IMAP4 NOOP command has a specific purpose—it allows the server to send any pending notifications to the client.
While most telnet or FTP servers respond to a NOOP command with "OK" or "+OK", some programmers have added quirky responses to the client. For example, the ftpd
daemon of MINIX responds to NOOP with the message: [19]
200 NOOP to you too!
NOPs are often involved when cracking software that checks for serial numbers, specific hardware or software requirements, presence or absence of hardware dongles, etc. in the form of a NOP slide. This process is accomplished by altering functions and subroutines to bypass security checks and instead simply return the expected value being checked for. Because most of the instructions in the security check routine will be unused, these would be replaced with NOPs, thus removing the software's security functionality without altering the positioning of everything which follows in the binary.
The NOP opcode can be used to form a NOP slide, which allows code to execute when the exact value of the instruction pointer is indeterminate (e.g., when a buffer overflow causes a function's return address on the stack to be overwritten).
NOPL
, the official long NOP
In computer programming, assembly language, often referred to simply as assembly and commonly abbreviated as ASM or asm, is any low-level programming language with a very strong correspondence between the instructions in the language and the architecture's machine code instructions. Assembly language usually has one statement per machine instruction (1:1), but constants, comments, assembler directives, symbolic labels of, e.g., memory locations, registers, and macros are generally also supported.
In programming and information security, a buffer overflow or buffer overrun is an anomaly whereby a program writes data to a buffer beyond the buffer's allocated memory, overwriting adjacent memory locations.
In computer programming, a macro is a rule or pattern that specifies how a certain input should be mapped to a replacement output. Applying a macro to an input is known as macro expansion. The input and output may be a sequence of lexical tokens or characters, or a syntax tree. Character macros are supported in software applications to make it easy to invoke common command sequences. Token and tree macros are supported in some programming languages to enable code reuse or to extend the language, sometimes for domain-specific languages.
Pascal is an imperative and procedural programming language, designed by Niklaus Wirth as a small, efficient language intended to encourage good programming practices using structured programming and data structuring. It is named after French mathematician, philosopher and physicist Blaise Pascal.
In computer science, an instruction set architecture (ISA) is an abstract model that generally defines how software controls the CPU in a computer or a family of computers. A device or program that executes instructions described by that ISA, such as a central processing unit (CPU), is called an implementation of that ISA.
In computer science, an interpreter is a computer program that directly executes instructions written in a programming or scripting language, without requiring them previously to have been compiled into a machine language program. An interpreter generally uses one of the following strategies for program execution:
In computer science, a recursive descent parser is a kind of top-down parser built from a set of mutually recursive procedures where each such procedure implements one of the nonterminals of the grammar. Thus the structure of the resulting program closely mirrors that of the grammar it recognizes.
Lexical tokenization is conversion of a text into meaningful lexical tokens belonging to categories defined by a "lexer" program. In case of a natural language, those categories include nouns, verbs, adjectives, punctuations etc. In case of a programming language, the categories include identifiers, operators, grouping symbols and data types. Lexical tokenization is related to the type of tokenization used in large language models (LLMs) but with two differences. First, lexical tokenization is usually based on a lexical grammar, whereas LLM tokenizers are usually probability-based. Second, LLM tokenizers perform a second step that converts the tokens into numerical values.
In computer science, self-modifying code is code that alters its own instructions while it is executing – usually to reduce the instruction path length and improve performance or simply to reduce otherwise repetitively similar code, thus simplifying maintenance. The term is usually only applied to code where the self-modification is intentional, not in situations where code accidentally modifies itself due to an error such as a buffer overflow.
In computer programming, indentation style is a convention, a.k.a. style, governing the indentation of blocks of source code. An indentation style generally involves consistent width of whitespace before each line of a block, so that the lines of code appear to be related, and dictates whether to use space or tab characters for the indentation whitespace.
In computer architecture, a delay slot is an instruction slot being executed without the effects of a preceding instruction. The most common form is a single arbitrary instruction located immediately after a branch instruction on a RISC or DSP architecture; this instruction will execute even if the preceding branch is taken. This makes the instruction execute out-of-order compared to its location in the original assembler language code.
In computer science, a pointer is an object in many programming languages that stores a memory address. This can be that of another value located in computer memory, or in some cases, that of memory-mapped computer hardware. A pointer references a location in memory, and obtaining the value stored at that location is known as dereferencing the pointer. As an analogy, a page number in a book's index could be considered a pointer to the corresponding page; dereferencing such a pointer would be done by flipping to the page with the given page number and reading the text found on that page. The actual format and content of a pointer variable is dependent on the underlying computer architecture.
In some programming languages, eval
, short for the English evaluate, is a function which evaluates a string as though it were an expression in the language, and returns a result; in others, it executes multiple lines of code as though they had been included instead of the line including the eval
. The input to eval
is not necessarily a string; it may be structured representation of code, such as an abstract syntax tree, or of special type such as code
. The analog for a statement is exec, which executes a string as if it were a statement; in some languages, such as Python, both are present, while in other languages only one of either eval
or exec
is.
IMP is an early systems programming language that was developed by Edgar T. Irons in the late 1960s through early 1970s, at the National Security Agency (NSA). Unlike most other systems languages, IMP supports syntax-extensible programming.
In computer programming, a return statement causes execution to leave the current subroutine and resume at the point in the code immediately after the instruction which called the subroutine, known as its return address. The return address is saved by the calling routine, today usually on the process's call stack or in a register. Return statements in many programming languages allow a function to specify a return value to be passed back to the code that called the function.
Transaction Application Language or TAL is a block-structured, procedural language optimized for use on Tandem hardware. TAL resembles a cross between C and Pascal. It was the original system programming language for the Tandem Computers CISC machines, which had no assembler.
This comparison of programming languages compares the features of language syntax (format) for over 50 computer programming languages.
Rexx is a programming language that can be interpreted or compiled. It was developed at IBM by Mike Cowlishaw. It is a structured, high-level programming language designed for ease of learning and reading. Proprietary and open source Rexx interpreters exist for a wide range of computing platforms; compilers exist for IBM mainframe computers.
In computer programming, a function is a callable unit of software logic that has a well-defined interface and behavior and can be invoked multiple times.
The PL/I preprocessor is the preprocessor for the PL/I computer programming language. The preprocessor interprets a subset of the full PL/I language to perform source file inclusion, conditional compilation, and macro expansion.
Note that NOP is a special case of the SETHI instruction, with imm22 = 0 and rd = 0.
;
) indicating that no statement will be executed, even if JavaScript syntax requires one."According to The TeXbook, 'TeX does nothing' when it encounters\relax
. Actually,\relax
may tell TeX, 'This is the end of what you've been doing'.