Oligopeptidase

Last updated
Prolyloligopeptidase complexed with a peptide Prolyloligopeptidase complexed with peptide.png
Prolyloligopeptidase complexed with a peptide

An Oligopeptidase is an enzyme that cleaves peptides but not proteins. This property is due to its structure: the active site of this enzyme is located at the end of a narrow cavity which can only be reached by peptides.

Contents

History

Background

Proteins are essential macromolecules of living organisms. They are continuously being degraded into their constituent amino acids which can be reused in the synthesis of new proteins. Every cellular protein has its own half-life time. In humans, for instance, 50% of the liver and plasma proteins are replaced in 10 days, whereas in muscles it takes 180 days. In average, every 80 days about 50% of our proteins are totally replaced. [2] Although the regulation of protein degradation is as important as their synthesis to keep each cell protein concentration at the optimum level, research in this area remained until the end of the 1970s. Up to this time, lysosomes, discovered in the 1950s by the Belgian cytologist Christian de Duve, were thought responsible for the complete digestion of intra- and extracellular proteins by the lysosomal hydrolytic enzymes.

Between the 1970s and 1980s, this view drastically changed. New experimental evidences showed that, under physiological conditions, non-lysosomal proteases were responsible for limited proteolysis of intra- and/or extracellular proteins, a concept originally conceived by Linderstᴓm-Lang in 1950. [3] Endogenous or exogenous proteins are processed by non-lysosomal proteases into intermediate-sized polypeptides, which display gene and metabolic regulation, neurologic, endocrine, and immunological roles, whose dysfunction might explain a number of pathologies. Consequently, protein degradation did not represent anymore the end of the biological function of proteins, but rather the beginning of a yet unexplored side of the biology of the cells. A number of intra- or extracellular proteases release protein fragments endowed with essential biological activities. These hydrolytic processes could be carried out by proteases such as Proteasomes, Proprotein Convertases, [4] Caspases, Rennin and Kallikreins. Among the products released by the non-lysosomal proteases are the bioactive oligopeptides such as hormones, neuropeptides and epitopes that, once released, could be modulated in their biological activities by specific peptidases, which promote the trimming, conversion and/or inactivation of the bioactive oligopeptides.

Early study

The history of oligopeptidases originates in the late 1960s, when the rabbit brain was searched for enzymes that cause inactivation of the nonapeptide bradykinin. [5] In the early and mid 1970s two thiol-activated endopeptidases, responsible for more than 90% of bradykinin inactivation, were isolated from cytosol of rabbit brain, and characterized. [6] [7] They correspond to EOPA (endooligopeptidase A, EC 3.4.22.19), and Prolyl endopeptidase or Prolyl oligopeptidase (POP) (EC 3.4.21.26). Since their activities are restricted to oligopeptides (usually from 8-13 amino acid residues), and do not hydrolyze proteins or large peptides (>30 amino acid residues), they were designated oligopeptidases. [8] In the early and mid 1980s other oligopeptidases, mostly metallopeptidases, were described in the cytosol of mammalian tissues, such as the TOP (thimet oligopeptidase, EC 3.4.24.15), [9] and the neurolysin (EC 3.4.24.16). [10] Earlier on, the ACE (angiotensin-converting enzyme, EC 3.4.15.1), and the NEP (neprilysin, EC 3.4.24.11), had been described, at the end of the 1960s, [11] and in 1973, [12] respectively.

Function and clinical significance

Short 'oligopeptides', predominantly smaller than 30 amino acids in length, play essential roles as hormones, in the surveillance against pathogens, and in neurological activities. Therefore, these molecules constantly need to be specifically generated and inactivated, which is the role of the oligopeptidases. Oligopeptidase is a term coined in 1979 to designate a sub-group of the endopeptidases, [8] [13] which are not involved in the digestion nor in the processing of proteins like the pancreatic enzymes, proteasomes, cathepsins among many others. The prolyl-oligopeptidase or prolyl endopeptidase (POP) is a good example of how an oligopeptidase interacts with and metabolizes an oligopeptide. The peptide has first to penetrate into a 4 Å hole on the surface of the enzyme in order to reach an 8,500Å3 internal cavity, where the active site is located. [1] [14] Even though the size of the peptide is crucial for its docking, the flexibility of both enzyme and ligand seems to play an essential role in determining whether a peptide bond will be hydrolyzed or not. [15] [16] This contrasts with the classical specificity of proteolytic enzymes, which derives from the chemical features of the amino acid side chains around the scissile bond. [17] A number of enzymatic studies supports this conclusion. [15] [18] This peculiar specificity suggests that the concept of conformational melding of the peptides used to explain the interaction between T-cell receptor and its epitopes, [19] seems more likely to describe the enzymatic specificity of the oligopeptidases. Another important feature of the oligopeptidases is their sensitivity to the oxidation-reduction (redox) state of the environment. [6] [7] An "on-off" switch provides a qualitative change in peptide binding and/or degradation activity. However, the redox state only exerts strong influence on cytosolic enzymes (TOP [20] [21] neurolysin [22] [23] POP [24] and Ndl-1 oligopeptidase, [25] [26] not on cytoplasmic membrane oligopeptidases (angiotensin-converting enzyme and neprilysin). Thus, the redox state of the intracellular environment very likely modulates the activity of the thiol-sensitive oligopeptidases, thereby contributing to define the fate of proteasome products, driving them to complete hydrolysis, or, alternatively, converting them into bioactive peptides, such as the MHC-Class I peptides. [16] [27] [28]

Since the discovery of the neuropeptides and peptide hormones from the central nervous system (ACTH, β-MSH, endorphin, oxytocin, vasopressin, LHRH, enkephalins, substance P), and of peripheral vasoactive peptides (angiotensin, bradykinin) around the middle of last century, the number of known biologically active peptides has exponentially increased. They are signaling molecules, participating in all essential aspects of life, from physiological homeostasis (as neuropeptides, peptide hormones, vasoactive peptides), to immunological defense (as MHC class I and II, cytokinins), and as regulatory peptides displaying more than a single action. These peptides result from partial proteolysis of intracellular or extracellular protein precursors performed by several processing enzymes or protease complexes (rennin, kallikreins, calpains, prohormone convertases, proteasomes, endosomes, lysosomes), which convert proteins into peptides, including those with biological activities. The resulting protein fragments of various sizes are either readily degraded into free amino acids, [29] or captured by oligopeptidases, whose peculiar binding and/or catalytic properties allow them to fulfill their physiological roles by trimming inactive peptide precursors leading to their active form, [27] [11] converting bioactive peptides into novel ones., [30] inactivating them, thus restraining the continuous activation of specific receptors, [6] [7] or protecting the newly generated bioactive peptide from further degradation, suggesting a peptide chaperon-like activity. [16] [28] TOP, a ubiquitous cytosolic oligopeptidase, is a remarkable example of how this enzyme could play an essential role in immune defense against cancer cells. [27] It has also been successfully used as a hook to fish novel bioactive peptides from cytosol of cells. [31]

The involvement of peptides in cell-cell interactions and in neuropsychiatric, autoimmune, and neurovegetative diseases are waiting for peptidomics [32] and gene silencing approaches, which will expedite the formation of new concepts in an emerging era for oligopeptidases.

The participation of oligopeptidases in a number of pathologies has long been reported. The ACE has benefited the most from a thorough knowledge on the enzyme structure and its mechanism of catalysis leading to the better understanding of its role in cardiovascular pathologies and therapeutics. Accordingly, for over 30 years, the treatment of human arterial hypertension has taken advantage of ACE inhibition by active site-directed inhibitors like captopril, enalapril, lisinopril, and others. [33] For the other oligopeptidases, especially those involved in human diseases, the existing studies are promising but not yet as developed as for the ACE. Some examples are: a) the POP of nervous tissues has been suggested to be involved in neuropsychiatric disorders, like in post-traumatic stress, depression, mania, nervous bulimia, anorexia, and schizophrenia, as reviewed in. [14] b) NEP has been involved in cancer; [34] c) the TOP has been involved in tuberculosis [28] and in cancer; [27] d) the EOPA or NUDEL/EOPA (NDEL1/EOPA gene product) has been involved in neuronal migration during the cortex formation in human embryo (lissencephaly) and neurite outgrowth in adults, as in schizophrenia. [26] [35] Coincidentally, an activity related to the development of nervous tissue has been suggested for POP, nevertheless not involving its proteolytic activity. [36] The absence of an oligopeptidase in the intestine was also responsible for the decreased serum zinc levels observed in patients who have the disease Acrodermatitis Enteropathica. [37]

Related Research Articles

<span class="mw-page-title-main">Protease</span> Enzyme that cleaves other proteins into smaller peptides

A protease is an enzyme that catalyzes proteolysis, breaking down proteins into smaller polypeptides or single amino acids, and spurring the formation of new protein products. They do this by cleaving the peptide bonds within proteins by hydrolysis, a reaction where water breaks bonds. Proteases are involved in numerous biological pathways, including digestion of ingested proteins, protein catabolism, and cell signaling.

<span class="mw-page-title-main">Oligopeptide</span>

An oligopeptide, often just called peptide, consists of two to twenty amino acids and can include dipeptides, tripeptides, tetrapeptides, and pentapeptides. Some of the major classes of naturally occurring oligopeptides include aeruginosins, cyanopeptolins, microcystins, microviridins, microginins, anabaenopeptins, and cyclamides. Microcystins are best studied, because of their potential toxicity impact in drinking water. A review of some oligopeptides found that the largest class are the cyanopeptolins (40.1%), followed by microcystins (13.4%).

<span class="mw-page-title-main">Bradykinin</span> Chemical compound

Bradykinin (BK) (Greek brady-, slow; -kinin, kīn(eîn) to move) is a peptide that promotes inflammation. It causes arterioles to dilate (enlarge) via the release of prostacyclin, nitric oxide, and endothelium-derived hyperpolarizing factor and makes veins constrict, via prostaglandin F2, thereby leading to leakage into capillary beds, due to the increased pressure in the capillaries. Bradykinin consists of nine amino acids, and is a physiologically and pharmacologically active peptide of the kinin group of proteins.

<span class="mw-page-title-main">Angiotensin-converting enzyme</span> Mammalian protein found in humans

Angiotensin-converting enzyme, or ACE, is a central component of the renin–angiotensin system (RAS), which controls blood pressure by regulating the volume of fluids in the body. It converts the hormone angiotensin I to the active vasoconstrictor angiotensin II. Therefore, ACE indirectly increases blood pressure by causing blood vessels to constrict. ACE inhibitors are widely used as pharmaceutical drugs for treatment of cardiovascular diseases.

The kinin–kallikrein system or simply kinin system is a poorly understood hormonal system with limited available research. It consists of blood proteins that play a role in inflammation, blood pressure control, coagulation and pain. Its important mediators bradykinin and kallidin are vasodilators and act on many cell types. Clinical symptoms include marked weakness, tachycardia, fever, leukocytosis and acceleration of ESR.

<span class="mw-page-title-main">Catalytic triad</span> Set of three coordinated amino acids

A catalytic triad is a set of three coordinated amino acids that can be found in the active site of some enzymes. Catalytic triads are most commonly found in hydrolase and transferase enzymes. An acid-base-nucleophile triad is a common motif for generating a nucleophilic residue for covalent catalysis. The residues form a charge-relay network to polarise and activate the nucleophile, which attacks the substrate, forming a covalent intermediate which is then hydrolysed to release the product and regenerate free enzyme. The nucleophile is most commonly a serine or cysteine amino acid, but occasionally threonine or even selenocysteine. The 3D structure of the enzyme brings together the triad residues in a precise orientation, even though they may be far apart in the sequence.

<span class="mw-page-title-main">Aminopeptidase</span> Class of enzymes

Aminopeptidases are enzymes that catalyze the cleavage of amino acids from the N-terminus (beginning), of proteins or peptides. They are found in many organisms; in the cell, they are found in many organelles, in the cytosol, and as membrane proteins. Aminopeptidases are used in essential cellular functions, and are often zinc metalloenzymes, containing a zinc cofactor.

<span class="mw-page-title-main">Thermolysin</span>

Thermolysin is a thermostable neutral metalloproteinase enzyme produced by the Gram-positive bacteria Bacillus thermoproteolyticus. It requires one zinc ion for enzyme activity and four calcium ions for structural stability. Thermolysin specifically catalyzes the hydrolysis of peptide bonds containing hydrophobic amino acids. However thermolysin is also widely used for peptide bond formation through the reverse reaction of hydrolysis. Thermolysin is the most stable member of a family of metalloproteinases produced by various Bacillus species. These enzymes are also termed 'neutral' proteinases or thermolysin -like proteinases (TLPs).

<span class="mw-page-title-main">Prolyl endopeptidase</span>

Prolyl endopeptidase (PE) also known as prolyl oligopeptidase or post-proline cleaving enzyme is an enzyme that in humans is encoded by the PREP gene.

Bradykinin receptor B<sub>2</sub> Protein-coding gene in the species Homo sapiens

Bradykinin receptor B2 is a G-protein coupled receptor for bradykinin, encoded by the BDKRB2 gene in humans.

<span class="mw-page-title-main">Proteinase K</span> Broad-spectrum serine protease

In molecular biology, Proteinase K is a broad-spectrum serine protease. The enzyme was discovered in 1974 in extracts of the fungus Parengyodontium album. Proteinase K is able to digest hair (keratin), hence, the name "Proteinase K". The predominant site of cleavage is the peptide bond adjacent to the carboxyl group of aliphatic and aromatic amino acids with blocked alpha amino groups. It is commonly used for its broad specificity. This enzyme belongs to Peptidase family S8 (subtilisin). The molecular weight of Proteinase K is 28,900 daltons.

<span class="mw-page-title-main">Fibroblast activation protein, alpha</span>

Fibroblast activation protein alpha (FAP-alpha) also known as prolyl endopeptidase FAP is an enzyme that in humans is encoded by the FAP gene.

<span class="mw-page-title-main">EGLN1</span> Protein-coding gene in the species Homo sapiens

Hypoxia-inducible factor prolyl hydroxylase 2 (HIF-PH2), or prolyl hydroxylase domain-containing protein 2 (PHD2), is an enzyme encoded by the EGLN1 gene. It is also known as Egl nine homolog 1. PHD2 is a α-ketoglutarate/2-oxoglutarate-dependent hydroxylase, a superfamily non-haem iron-containing proteins. In humans, PHD2 is one of the three isoforms of hypoxia-inducible factor-proline dioxygenase, which is also known as HIF prolyl-hydroxylase.

<span class="mw-page-title-main">THOP1</span> Protein-coding gene in the species Homo sapiens

Thimet oligopeptidase is an enzyme that in humans is encoded by the THOP1 gene.

<span class="mw-page-title-main">NLN (gene)</span> Protein-coding gene in the species Homo sapiens

Neurolysin, mitochondrial is a protein that in humans is encoded by the NLN gene. It is a 78-kDa enzyme, widely distributed in mammalian tissues and found in various subcellular locations that vary with cell type. Neurolysin exemplifies the ability of neuropeptidases to target various cleavage site sequences by hydrolyzing them in vitro, and metabolism of neurotensin is the most important role of neurolysin in vivo. Neurolysin has also been implicated in pain control, blood pressure regulation, sepsis, reproduction, cancer biology pathogenesis of stroke, and glucose metabolism.

<span class="mw-page-title-main">XPNPEP1</span> Protein-coding gene in the species Homo sapiens

Xaa-Pro aminopeptidase 1 is an enzyme that in humans is encoded by the XPNPEP1 gene.

<span class="mw-page-title-main">PREPL</span> Protein-coding gene in the species Homo sapiens

Prolyl endopeptidase-like is an enzyme that in humans is encoded by the PREPL gene.

<span class="mw-page-title-main">C9orf3</span> Protein-coding gene in the species Homo sapiens

Chromosome 9 open reading frame 3 (C9ORF3) also known as aminopeptidase O (APO) is an enzyme which in humans is encoded by the C9ORF3 gene. The protein encoded by this gene is an aminopeptidase which is most closely related in sequence to leukotriene A4 hydrolase (LTA4H). APO is a member of the M1 metalloproteinase family.

Oligopeptidase A is an enzyme. This enzyme catalyses the following chemical reaction

<span class="mw-page-title-main">Thimet oligopeptidase</span>

Thimet oligopeptidases, also known as TOPs, are a type of M3 metallopeptidases. These enzymes can be found in animals and plants, showing distinctive functions. In animals and humans, they are involved in the degradation of peptides, such as bradykinin, neurotensin, angiotensin I, and Aβ peptide, helping to regulate physiological processes. In plants, their role is related to the degradation of targeting peptides and the immune response to pathogens through Salicylic Acid (SA)-dependent stress signaling. In Arabidopsis thaliana—recognized as a model plant for scientific studies—two thimet oligopeptidases, known as TOP1 and TOP2, have been identified as targets for salicylic acid binding in the plant. These TOP enzymes are key components to understand the SA-mediated signaling where interactions exist with different components and most of the pathways are unknown.

References

  1. 1 2 Fülöp V, Böcskei Z, Polgár L (1998). "Prolyl oligopeptidase: an unusual beta propeller domain regulates proteolysis". Cell. 94 (2): 161–170. doi: 10.1016/s0092-8674(00)81416-6 . PMID   9695945. S2CID   17074611.
  2. Bachmair A, Finley D, Varshavsky A (Oct 1986), "In vivo half-life of a protein is a function of its amino-terminal residue", Science, 234 (4773): 179–86, Bibcode:1986Sci...234..179B, doi:10.1126/science.3018930, PMID   3018930
  3. Linderstrøm-Lang K (1950), "In vivo half-life of a protein is a function of its amino-terminal residue", Cold Spring Harb Symp Quant Biol, 14: 117–26, doi:10.1101/sqb.1950.014.01.016, PMID   15442905
  4. Seidah NG (Mar 2011), "What lies ahead for the proprotein convertases?", Annals of the New York Academy of Sciences, 1220 (1): 149–61, Bibcode:2011NYASA1220..149S, doi: 10.1111/j.1749-6632.2010.05883.x , PMID   21388412, S2CID   22864082
  5. Camargo AC, Graeff F (1969). "Subcellular distribution and properties of the bradykinin inactivation system in rabbit brain homogenates". Biochem Pharmacol. 18 (2): 548–549. doi:10.1016/0006-2952(69)90235-4. PMID   5778163.
  6. 1 2 3 Camargo AC, Shapanka R, Greene LJ (April 1973). "Preparation, assay, and partial characterization of a neutral endopeptidase from rabbit brain". Biochemistry. 12 (9): 1838–44. doi:10.1021/bi00733a028. PMID   4699240.
  7. 1 2 3 Oliveira EB, Martins AR, Camargo AC (1976). "Isolation of brain endopeptidases: Influence of size and sequence of substrates structurally related to bradykinin". Biochemistry. 15 (9): 1967–1974. doi:10.1021/bi00654a026. PMID   5120.
  8. 1 2 Camargo AC, Caldo H, Reis ML (1979). "Susceptibility of a peptide derived from bradykinin to hydrolysis by brain endo-oligopeptidases and pancreatic proteinases". J Biol Chem. 254 (12): 5304–5307. doi: 10.1016/S0021-9258(18)50595-0 . PMID   447650.
  9. Orlowski M, Michaud C, Chu TG (1983). "A soluble metalloendopeptidase from rat brain. Purification of the enzyme and determination of specificity with synthetic and natural peptides". Eur J Biochem. 135 (1): 81–88. doi:10.1111/j.1432-1033.1983.tb07620.x. PMID   6349998.
  10. Checler F, Vincent JP, Kitabgi P (August 1983). "Degradation of neurotensin by rat brain synaptic membranes: involvement of a thermolysin-like metalloendopeptidase (enkephalinase), angiotensin-converting enzyme, and other unidentified peptidases". J. Neurochem. 41 (2): 375–84. doi:10.1111/j.1471-4159.1983.tb04753.x. PMID   6308159. S2CID   21440301.
  11. 1 2 Erdös, Ervin G.; Tan, Fulong; Skidgel, Randal A. (2010). "Angiotensin I–Converting Enzyme Inhibitors Are Allosteric Enhancers of Kinin B1 and B2 Receptor Function". Hypertension. 55 (2): 214–220. doi:10.1161/HYPERTENSIONAHA.109.144600. PMC   2814794 . PMID   20065150.
  12. Kerr MA, Kenny AJ (1974). "The purification and specificity of a neutral endopeptidase from rabbit kidney brush border". Biochem J. 137 (3): 477–488. doi:10.1042/bj1370477. PMC   1166147 . PMID   4423492.
  13. Barrett AJ, Rawlings ND (July 1992). "Oligopeptidases, and the emergence of the prolyl oligopeptidase family". Biol. Chem. Hoppe-Seyler. 373 (2): 353–60. doi:10.1515/bchm3.1992.373.2.353. PMID   1515061.
  14. 1 2 Li M, Chen C, Davies DR, Chiu TK (2010). "Induced-fit mechanism for prolyl endopeptidase". J Biol Chem. 285 (28): 21487–21495. doi: 10.1074/jbc.M109.092692 . PMC   2898448 . PMID   20444688.
  15. 1 2 Jacchieri SG, Gomes MD, Juliano L, Camargo AC (June 1998). "A comparative conformational analysis of thimet oligopeptidase (EC 3.4.24.15) substrates". The Journal of Peptide Research. 51 (6): 452–9. doi:10.1111/j.1399-3011.1998.tb00644.x. PMID   9650720.
  16. 1 2 3 Portaro F, Gomes MD, Cabrera A, et al. (1999). "Thimet oligopeptidase and the stability of MHC class I epitopes in macrophage cytosol". Biochem. Biophys. Res. Commun. 255 (3): 596–601. doi:10.1006/bbrc.1999.0251. PMID   10049756.
  17. Schechter I, Berger A (1967). "On the size of the active site in proteases I. Papain". Biochem Biophys Res Commun. 27 (2): 157–162. doi:10.1016/s0006-291x(67)80055-x. PMID   6035483.
  18. Camargo AC, Gomes MD, Reichl AP, Jacchieri SG, Juliano L (1997). "Structural features which make oligopeptides susceptible to hydrolysis by recombinant endooligopeptidase 24.15 (EC 3.4.24.15)". Biochem J. 324 (Pt 2): 517–522. doi:10.1042/bj3240517. PMC   1218460 . PMID   9182712.
  19. Backer BM, Scott DR, Blevins SJ, Hawse WF (2012). "Structural and dynamic control of T-cell receptor specificity, cross-reactivity, and binding mechanism". Immunological Reviews. 250 (1): 10–31. doi:10.1111/j.1600-065X.2012.01165.x. PMID   23046120. S2CID   9837194.
  20. Shrimpton CN, Glucksman MJ, Lew RA, et al. (1997). "Thiol activation of endopeptidase (EC 3.4.24.15). A novel mechanism for the regulation of the catalytic activity". J Biol Chem. 272 (28): 17395–17399. doi: 10.1074/jbc.272.28.17395 . PMID   9211880.
  21. Ray K, Hines CS, Coll-Rodriguez J, Rodgers DW (2004). "Crystal structure of human thimet oligopeptidase provides insight into substrate recognition, regulation, and localization". J Biol Chem. 279 (19): 20480–20489. doi: 10.1074/jbc.M400795200 . PMID   14998993.
  22. Kato A, Sugiura N, et al. (1997). "Targeting of endopeptidase 24.16 to different subcellular compartments by alternative promoter usage". J Biol Chem. 272 (24): 15313–15322. doi: 10.1074/jbc.272.24.15313 . PMID   9182559.
  23. Santos KL, Vento MA, et al. (2013). "The effects of para-chloromercuribenzoic acid and different oxidative and sulfhydryl agents on a novel, non-AT1, non-AT2 angiotensin binding site identified as neurolysin". Regul Pept. 184: 104–114. doi:10.1016/j.regpep.2013.03.021. PMC   4152863 . PMID   23511333.
  24. Fulöp V, Szeltner Z, Polgár L (2000). "Catalysis of serine oligopeptidases is controlled by a gating filter mechanism". EMBO Rep. 1 (3): 277–281. doi:10.1093/embo-reports/kvd048. PMC   1083722 . PMID   11256612.
  25. Gomes MD, Juliano L, et al. (1993). "Dynorphin-derived peptides reveal the presence of a critical cysteine for the activity of brain endo-oligopeptidase A". Biochem Biophys Res Commun. 197 (2): 501–507. doi:10.1006/bbrc.1993.2507. PMID   7903528.
  26. 1 2 Hayashi MA, Portaro FC, Bastos MF, et al. (2005). "Inhibition of NUDEL (nuclear distribution element-like)-oligopeptidase activity by disrupted-in-schizophrenia 1". Proc. Natl. Acad. Sci. USA. 102 (10): 3828–3833. Bibcode:2005PNAS..102.3828H. doi: 10.1073/pnas.0500330102 . PMC   553309 . PMID   15728732.
  27. 1 2 3 4 Kessier JH, Khan S, Seifert U et al. (2011) Antigen processing by nardilysin and thimet oligopeptidase generates cytotoxic T cell epitopes. Nature Immunology- http://www.nature.com/ni/journal/v12/n1/full/ni.1974.html
  28. 1 2 3 Silva CL, Portaro FC, Bonato VL, et al. (1999). "Thimet Oligopeptidase (EC.3.4.24.15) is a novel protein on the route of MHC class I antigen presentation". Biochem Biophys Res Commun. 255 (3): 591–595. doi:10.1006/bbrc.1999.0250. PMID   10049755.
  29. Goldberg AL (2003). "Protein degradation and protection against misfolded or damaged proteins". Nature. 426 (6968): 895–899. Bibcode:2003Natur.426..895G. doi:10.1038/nature02263. PMID   14685250. S2CID   395463.
  30. Camargo AC, Oliveira EB, Toffoletto O, et al. (1997). "Brain endo-oligopeptidase A, a putative enkephalin converting enzyme". J Neurochem. 48 (4): 1258–1263. doi:10.1111/j.1471-4159.1987.tb05655.x. PMID   2880931. S2CID   27763093.
  31. Gelman JS, Sironi J, Castro LM, et al. (2010). "Hemopressins and other hemoglobin-derived peptides in mouse brain: comparison between brain, blood, and heart peptidome and regulation in Cpefat/fat mice". J. Neurochem. 113 (4): 871–880. doi:10.1111/j.1471-4159.2010.06653.x. PMC   2867603 . PMID   20202081.
  32. Gelman JS, Sironi J, Castro LM, et al. (2011). "Peptidomic analysis of human cell lines". J Proteome Res. 10 (4): 1583–1592. doi:10.1021/pr100952f. PMC   3070057 . PMID   21204522.
  33. Norris, S.; Weinstein, J.; Peterson, K.; Thakurta, S. (2010). "Drug Class Review: Direct Renin Inhibitors, Angiotensin Converting Enzyme Inhibitors, and Angiotensin II Receptor Blockers: Final Report". Drug Class Reviews. Oregon Health & Science University. PMID   21089241.
  34. [Maguer-Satta V, Besançon R, Bachelard-Cascale E (2011). Concise Review: Neutral Endopeptidase (NEP/CD10): a Multifaceted Environment Actor in Stem Cells, Physiological Mechanisms and Cancer. Stem Cells Jan 7; see www.StemCells.com for supporting information available online]
  35. Hayashi MA, Guerreiro JR, Charych E, et al. (2010). "Assessing the role of endooligopeptidase activity of Ndel1 (nuclear-distribution gene E homolog like-1)in neurite outgrowth". Mol Cell Neurosci. 44 (4): 353–361. doi:10.1016/j.mcn.2010.04.006. PMID   20462516. S2CID   28105773.
  36. Hannula MJ, Männistö PT, Myöhänen TT (2010). "Sequential Expression, Activity and Nuclear Localization of Prolyl Oligopeptidase Protein in the Developing Rat Brain". Dev Neurosci. 33 (1): 38–47. doi:10.1159/000322082. PMID   21160163. S2CID   39094074.
  37. Beigi, Pooya Khan Mohammd; Maverakis, Emanual (2015). "Acrodermatitis Enteropathica: A Clinician's Guide".{{cite journal}}: Cite journal requires |journal= (help)