# Pappus's area theorem

Last updated

Pappus's area theorem describes the relationship between the areas of three parallelograms attached to three sides of an arbitrary triangle. The theorem, which can also be thought of as a generalization of the Pythagorean theorem, is named after the Greek mathematician Pappus of Alexandria (4th century AD), who discovered it.

## Theorem

Given an arbitrary triangle with two arbitrary parallelograms attached to two of its sides the theorem tells how to construct a parallelogram over the third side, such that the area of the third parallelogram equals the sum of the areas of the other two parallelograms.

Let ABC be the arbitrary triangle and ABDE and ACFG the two arbitrary parallelograms attached to the triangle sides AB and AC. The extended parallelogram sides DE and FG intersect at H. The line segment AH now "becomes" the side of the third parallelogram BCML attached to the triangle side BC, i.e., one constructs line segments BL and CM over BC, such that BL and CM are a parallel and equal in length to AH. The following identity then holds for the areas (denoted by A) of the parallelograms:

${\displaystyle {\text{A}}_{ABDE}+{\text{A}}_{ACFG}={\text{A}}_{BCML}}$

The theorem generalizes the Pythagorean theorem twofold. Firstly it works for arbitrary triangles rather than only for right angled ones and secondly it uses parallelograms rather than squares. For squares on two sides of an arbitrary triangle it yields a parallelogram of equal area over the third side and if the two sides are the legs of a right angle the parallelogram over the third side will be square as well. For a right-angled triangle, two parallelograms attached to the legs of the right angle yield a rectangle of equal area on the third side and again if the two parallelograms are squares then the rectangle on the third side will be a square as well.

## Proof

Due to having the same base length and height the parallelograms ABDE and ABUH have the same area, the same argument applying to the parallelograms ACFG and ACVH, ABUH and BLQR, ACVH and RCMQ. This already yields the desired result, as we have:

{\displaystyle {\begin{aligned}{\text{A}}_{ABDE}+{\text{A}}_{ACFG}&={\text{A}}_{ABUH}+{\text{A}}_{ACVH}\\&={\text{A}}_{BLRQ}+{\text{A}}_{RCMQ}\\&={\text{A}}_{BCML}\end{aligned}}}

## Related Research Articles

Area is the quantity that expresses the extent of a two-dimensional figure or shape or planar lamina, in the plane. Surface area is its analog on the two-dimensional surface of a three-dimensional object. Area can be understood as the amount of material with a given thickness that would be necessary to fashion a model of the shape, or the amount of paint necessary to cover the surface with a single coat. It is the two-dimensional analog of the length of a curve or the volume of a solid.

In Euclidean plane geometry, a quadrilateral is a polygon with four edges (sides) and four vertices (corners). Other names for quadrilateral include quadrangle, tetragon, and 4-gon. A quadrilateral with vertices , , and is sometimes denoted as .

A triangle is a polygon with three edges and three vertices. It is one of the basic shapes in geometry. A triangle with vertices A, B, and C is denoted .

A right triangle or right-angled triangle is a triangle in which one angle is a right angle. The relation between the sides and angles of a right triangle is the basis for trigonometry.

In mathematics, the triangle inequality states that for any triangle, the sum of the lengths of any two sides must be greater than or equal to the length of the remaining side. This statement permits the inclusion of degenerate triangles, but some authors, especially those writing about elementary geometry, will exclude this possibility, thus leaving out the possibility of equality. If x, y, and z are the lengths of the sides of the triangle, with no side being greater than z, then the triangle inequality states that

In Euclidean plane geometry, a rectangle is a quadrilateral with four right angles. It can also be defined as an equiangular quadrilateral, since equiangular means that all of its angles are equal. It can also be defined as a parallelogram containing a right angle. A rectangle with four sides of equal length is a square. The term oblong is occasionally used to refer to a non-square rectangle. A rectangle with vertices ABCD would be denoted as  ABCD.

In geometry and trigonometry, a right angle is an angle of exactly 90° (degrees), corresponding to a quarter turn. If a ray is placed so that its endpoint is on a line and the adjacent angles are equal, then they are right angles. The term is a calque of Latin angulus rectus; here rectus means "upright", referring to the vertical perpendicular to a horizontal base line.

In Euclidean geometry, a parallelogram is a simple (non-self-intersecting) quadrilateral with two pairs of parallel sides. The opposite or facing sides of a parallelogram are of equal length and the opposite angles of a parallelogram are of equal measure. The congruence of opposite sides and opposite angles is a direct consequence of the Euclidean parallel postulate and neither condition can be proven without appealing to the Euclidean parallel postulate or one of its equivalent formulations.

In geometry, Thales's theorem states that if A, B, and C are distinct points on a circle where the line AC is a diameter, the angle ABC is a right angle. Thales's theorem is a special case of the inscribed angle theorem and is mentioned and proved as part of the 31st proposition in the third book of Euclid's Elements. It is generally attributed to Thales of Miletus, who is said to have offered an ox, probably to the god Apollo, as a sacrifice of thanksgiving for the discovery, but it is sometimes attributed to Pythagoras.

In geometry, a square is a regular quadrilateral, which means that it has four equal sides and four equal angles. It can also be defined as a rectangle in which two adjacent sides have equal length. A square with vertices ABCD would be denoted ABCD.

A special right triangle is a right triangle with some regular feature that makes calculations on the triangle easier, or for which simple formulas exist. For example, a right triangle may have angles that form simple relationships, such as 45°–45°–90°. This is called an "angle-based" right triangle. A "side-based" right triangle is one in which the lengths of the sides form ratios of whole numbers, such as 3 : 4 : 5, or of other special numbers such as the golden ratio. Knowing the relationships of the angles or ratios of sides of these special right triangles allows one to quickly calculate various lengths in geometric problems without resorting to more advanced methods.

In geometry, Apollonius's theorem is a theorem relating the length of a median of a triangle to the lengths of its sides. It states that "the sum of the squares of any two sides of any triangle equals twice the square on half the third side, together with twice the square on the median bisecting the third side".

In Euclidean geometry, the British flag theorem says that if a point P is chosen inside rectangle ABCD then the sum of the squares of the Euclidean distances from P to two opposite corners of the rectangle equals the sum to the other two opposite corners. As an equation:

In trigonometry, the law of cosines relates the lengths of the sides of a triangle to the cosine of one of its angles. Using notation as in Fig. 1, the law of cosines states

In mathematics, the Pythagorean theorem, also known as Pythagoras's theorem, is a fundamental relation in Euclidean geometry among the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse is equal to the sum of the areas of the squares on the other two sides. This theorem can be written as an equation relating the lengths of the sides a, b and c, often called the "Pythagorean equation":

In Euclidean geometry, an orthodiagonal quadrilateral is a quadrilateral in which the diagonals cross at right angles. In other words, it is a four-sided figure in which the line segments between non-adjacent vertices are orthogonal (perpendicular) to each other.

In mathematics, statistics and elsewhere, sums of squares occur in a number of contexts:

The right triangle altitude theorem or geometric mean theorem is a result in elementary geometry that describes a relation between the lengths of the altitude on the hypotenuse in a right triangle and the two line segments it creates on the hypotenuse. It states that the geometric mean of the two segments equals the altitude.

The quadratrix or trisectrix of Hippias is a curve, which is created by a uniform motion. It is one of the oldest examples for a kinematic curve, that is a curve created through motion. Its discovery is attributed to the Greek sophist Hippias of Elis, who used it around 420 BC in an attempt to solve the angle trisection problem. Later around 350 BC Dinostratus used it in an attempt to solve the problem of squaring the circle.

The theorem of the gnomon states that certain parallelograms occurring in a gnomon have areas of equal size.

## References

• Howard Eves: Pappus's Extension of the Pythagorean Theorem.The Mathematics Teacher, Vol. 51, No. 7 (November 1958), pp. 544–546 (JSTOR)
• Howard Eves: Great Moments in Mathematics (before 1650). Mathematical Association of America, 1983, ISBN   9780883853108, p. 37 ( excerpt , p. 37, at Google Books)
• Eli Maor: The Pythagorean Theorem: A 4,000-year History. Princeton University Press, 2007, ISBN   9780691125268, pp. 58–59 ( excerpt , p. 58, at Google Books)
• Claudi Alsina, Roger B. Nelsen: Charming Proofs: A Journey Into Elegant Mathematics. MAA, 2010, ISBN   9780883853481, pp. 77–78 ( excerpt , p. 77, at Google Books)