Posted write

Last updated

[1] A posted write is a computer bus write transaction that does not wait for a write completion response to indicate success or failure of the write transaction. For a posted write, the CPU assumes that the write cycle will complete with zero wait states, and so doesn't wait for the done. This speeds up writes considerably. For starters, it doesn't have to wait for the done response, but it also allows for better pipelining of the datapath without much performance penalty.

Contents

A non-posted write requires that a bus transaction responds with a write completion response to indicate success or failure of the transaction, and is naturally much slower than a posted write since it requires a round trip delay similar to read bus transactions.

In reference to memory bus accesses, a posted write is referred to as a posted memory write (PMW).

See also

Related Research Articles

<span class="mw-page-title-main">Computer data storage</span> Storage of digital data readable by computers

Computer data storage or digital data storage is a technology consisting of computer components and recording media that are used to retain digital data. It is a core function and fundamental component of computers.

The control unit (CU) is a component of a computer's central processing unit (CPU) that directs the operation of the processor. A CU typically uses a binary decoder to convert coded instructions into timing and control signals that direct the operation of the other units.

<span class="mw-page-title-main">Bus (computing)</span> System that transfers data between components within a computer

In computer architecture, a bus is a communication system that transfers data between components inside a computer, or between computers. This expression covers all related hardware components and software, including communication protocols.

<span class="mw-page-title-main">Interrupt</span> Signal to a computer processor emitted by hardware or software

In digital computers, an interrupt is a request for the processor to interrupt currently executing code, so that the event can be processed in a timely manner. If the request is accepted, the processor will suspend its current activities, save its state, and execute a function called an interrupt handler to deal with the event. This interruption is often temporary, allowing the software to resume normal activities after the interrupt handler finishes, although the interrupt could instead indicate a fatal error.

<span class="mw-page-title-main">Operating system</span> Software that manages computer hardware resources

An operating system (OS) is system software that manages computer hardware and software resources, and provides common services for computer programs.

<span class="mw-page-title-main">Peripheral Component Interconnect</span> Local computer bus for attaching hardware devices

Peripheral Component Interconnect (PCI) is a local computer bus for attaching hardware devices in a computer and is part of the PCI Local Bus standard. The PCI bus supports the functions found on a processor bus but in a standardized format that is independent of any given processor's native bus. Devices connected to the PCI bus appear to a bus master to be connected directly to its own bus and are assigned addresses in the processor's address space. It is a parallel bus, synchronous to a single bus clock. Attached devices can take either the form of an integrated circuit fitted onto the motherboard or an expansion card that fits into a slot. The PCI Local Bus was first implemented in IBM PC compatibles, where it displaced the combination of several slow Industry Standard Architecture (ISA) slots and one fast VESA Local Bus (VLB) slot as the bus configuration. It has subsequently been adopted for other computer types. Typical PCI cards used in PCs include: network cards, sound cards, modems, extra ports such as Universal Serial Bus (USB) or serial, TV tuner cards and hard disk drive host adapters. PCI video cards replaced ISA and VLB cards until rising bandwidth needs outgrew the abilities of PCI. The preferred interface for video cards then became Accelerated Graphics Port (AGP), a superset of PCI, before giving way to PCI Express.

Direct memory access (DMA) is a feature of computer systems that allows certain hardware subsystems to access main system memory independently of the central processing unit (CPU).

<span class="mw-page-title-main">Harvard architecture</span> Computer architecture where code and data each have a separate bus

The Harvard architecture is a computer architecture with separate storage and signal pathways for instructions and data. It is often contrasted with the von Neumann architecture, where program instructions and data share the same memory and pathways. This architecture is often used in real-time processing or low-power applications.

<span class="mw-page-title-main">Front-side bus</span> Type of computer communication interface

The front-side bus (FSB) is a computer communication interface (bus) that was often used in Intel-chip-based computers during the 1990s and 2000s. The EV6 bus served the same function for competing AMD CPUs. Both typically carry data between the central processing unit (CPU) and a memory controller hub, known as the northbridge.

Tandem Computers, Inc. was the dominant manufacturer of fault-tolerant computer systems for ATM networks, banks, stock exchanges, telephone switching centers, 911 systems, and other similar commercial transaction processing applications requiring maximum uptime and zero data loss. The company was founded by Jimmy Treybig in 1974 in Cupertino, California. It remained independent until 1997, when it became a server division within Compaq. It is now a server division within Hewlett Packard Enterprise, following Hewlett-Packard's acquisition of Compaq and the split of Hewlett-Packard into HP Inc. and Hewlett Packard Enterprise.

The MESI protocol is an Invalidate-based cache coherence protocol, and is one of the most common protocols that support write-back caches. It is also known as the Illinois protocol due to its development at the University of Illinois at Urbana-Champaign. Write back caches can save considerable bandwidth generally wasted on a write through cache. There is always a dirty state present in write-back caches that indicates that the data in the cache is different from that in the main memory. The Illinois Protocol requires a cache-to-cache transfer on a miss if the block resides in another cache. This protocol reduces the number of main memory transactions with respect to the MSI protocol. This marks a significant improvement in performance.

In computing, a bus error is a fault raised by hardware, notifying an operating system (OS) that a process is trying to access memory that the CPU cannot physically address: an invalid address for the address bus, hence the name. In modern use on most architectures these are much rarer than segmentation faults, which occur primarily due to memory access violations: problems in the logical address or permissions.

Memory-mapped I/O (MMIO) and port-mapped I/O (PMIO) are two complementary methods of performing input/output (I/O) between the central processing unit (CPU) and peripheral devices in a computer. An alternative approach is using dedicated I/O processors, commonly known as channels on mainframe computers, which execute their own instructions.

In computer science, the test-and-set instruction is an instruction used to write (set) 1 to a memory location and return its old value as a single atomic operation. The caller can then "test" the result to see if the state was changed by the call. If multiple processes may access the same memory location, and if a process is currently performing a test-and-set, no other process may begin another test-and-set until the first process's test-and-set is finished. A central processing unit (CPU) may use a test-and-set instruction offered by another electronic component, such as dual-port RAM; a CPU itself may also offer a test-and-set instruction.

<span class="mw-page-title-main">Instruction cycle</span> Basic operation cycle of a computer

The instruction cycle is the cycle that the central processing unit (CPU) follows from boot-up until the computer has shut down in order to process instructions. It is composed of three main stages: the fetch stage, the decode stage, and the execute stage.

<span class="mw-page-title-main">Microarchitecture</span> Component of computer engineering

In electronics, computer science and computer engineering, microarchitecture, also called computer organization and sometimes abbreviated as μarch or uarch, is the way a given instruction set architecture (ISA) is implemented in a particular processor. A given ISA may be implemented with different microarchitectures; implementations may vary due to different goals of a given design or due to shifts in technology.

In computer science, asynchronous I/O is a form of input/output processing that permits other processing to continue before the I/O operation has finished. A name used for asynchronous I/O in the Windows API is overlapped I/O.

<span class="mw-page-title-main">Low Pin Count</span> Low-bandwidth computer motherboard bus

The Low Pin Count (LPC) bus is a computer bus used on IBM-compatible personal computers to connect low-bandwidth devices to the CPU, such as the BIOS ROM, "legacy" I/O devices, and Trusted Platform Module (TPM). "Legacy" I/O devices usually include serial and parallel ports, PS/2 keyboard, PS/2 mouse, and floppy disk controller.

<span class="mw-page-title-main">Dual-ported video RAM</span> Dual-ported variant of dynamic RAM

Dual-ported video RAM (VRAM) is a dual-ported variant of dynamic RAM (DRAM), which was once commonly used to store the framebuffer in graphics adapters.

<span class="mw-page-title-main">Emulator</span> System allowing a device to imitate another

In computing, an emulator is hardware or software that enables one computer system to behave like another computer system. An emulator typically enables the host system to run software or use peripheral devices designed for the guest system. Emulation refers to the ability of a computer program in an electronic device to emulate another program or device.

References

  1. "Post-Writing | Foreign Language Teaching Methods: Writing". coerll.utexas.edu. Retrieved 2021-12-07.