Simian virus 40 | |
---|---|
Virus classification | |
(unranked): | Virus |
Realm: | Monodnaviria |
Kingdom: | Shotokuvirae |
Phylum: | Cossaviricota |
Class: | Papovaviricetes |
Order: | Sepolyvirales |
Family: | Polyomaviridae |
Genus: | Betapolyomavirus |
Species: | |
Virus: | Simian virus 40 |
Synonyms | |
simian vacuolating virus 40, SV40 |
SV40 is an abbreviation for simian vacuolating virus 40 or simian virus 40, a polyomavirus that is found in both monkeys and humans. Like other polyomaviruses, SV40 is a DNA virus that is found to cause tumors in humans and animals, but most often persists as a latent infection. SV40 has been widely studied as a model eukaryotic virus, leading to many early discoveries in eukaryotic DNA replication [1] and transcription. [2]
Following contamination of polio vaccine batches in the 1950s and 1960s, SV40 came under suspicion as a possible cancer risk, but no subsequent increased cancer rate was observed, making such a risk unlikely. Nevertheless SV40 has become a cause célèbre for anti-vaccination activists, who have blamed it for multiple ills, including cancer and HIV/AIDS. [3]
The hypothesis that SV40 might cause cancer in humans was a particularly controversial area of research, fuelled by the historical contamination of some batches of polio vaccine with SV40 in the 1950s and 1960s. [4] "Persuasive evidence now indicates that SV40 is causing infections in humans today and represents an emerging pathogen." [5] However "It appears unlikely that SV40 infection alone is sufficient to cause human malignancy..." [6]
It has been suggested that SV40 may act as a co-carcinogen with crocidolite asbestos to cause mesothelioma. [7] [8]
Some vaccines made in the US between 1955 and 1961 were found to be contaminated with SV40, from the growth medium and from the original seed strain. Population level studies did not show extensive evidence of increase in cancer incidence as a result of exposure, [9] though SV40 has been extensively studied. [10] A thirty-five year follow-up did not find excess numbers of cancers associated with SV40. [11]
Due to its high tissue tropism, biotechnology companies seek to utilize modified SV40 based vectors as a viral vector for gene therapy. In these helper dependent virus or packaging cell line assisted produced vectors the SV40 large T antigen and SV40 small T antigen are removed. [12] [13] [14]
SV40 consists of an unenveloped icosahedral virion with a closed circular double-stranded DNA genome [15] of 5.2 kb. [16] The virion adheres to cell surface receptors of MHC class I by the virion glycoprotein VP1. Penetration into the cell is through a caveolin vesicle. Inside the cell nucleus, the cellular RNA polymerase II acts to promote early gene expression. This results in an mRNA that is spliced into two segments. The small and large T antigens result from this. The large T antigen has two functions: 5% goes to the plasma cell membrane and 95% returns to the nucleus. Once in the nucleus the large T antigen binds three viral DNA sites, I, II and III. Binding of sites I and II autoregulates early RNA synthesis. Binding to site II takes place in each cell cycle. Binding site I initiates DNA replication at the origin of replication. Early transcription gives two spliced RNAs that are both 19s. Late transcription gives both a longer 16s, which synthesizes the major viral capsid protein VP1; and the smaller 19s, which gives VP2 and VP3 through leaky scanning. All of the proteins, besides the 5% of large T, return to the nucleus because assembly of the viral particle happens there. A putative late protein VP4 has been reported to act as a viroporin facilitiating release of viral particles and resulting in cytolysis; [17] [18] however the presence and role of VP4 have been disputed. [19] [20]
SV40 is capable of multiplicity reactivation (MR). [21] [22] MR is the process by which two or more virus genomes containing otherwise lethal damage interact within an infected cell to form a viable virus genome. Yamamato and Shimojo observed MR when SV40 virions were irradiated with UV light and allowed to undergo multiple infection of host cells. [21] Hall studied MR when SV 40 virions were exposed to the DNA crosslinking agent 4, 5', 8-trimethylpsoralen. [22] Under conditions in which only a single virus particle entered each host cell, approximately one DNA cross-link was lethal to the virus and could not be repaired. In contrast, when multiple viral genomes infected a host cell, psoralen-induced DNA cross-links were repaired; that is, MR occurred. Hall suggested that the virions with cross-linked DNA were repaired by recombinational repair. [22] Michod et al. reviewed numerous examples of MR in different viruses and suggested that MR is a common form of sexual interaction that provides the advantage of recombinational repair of genome damages. [23]
The early promoter for SV40 contains three elements. The TATA box is located approximately 20 base-pairs upstream from the transcriptional start site. The 21 base-pair repeats contain six GC boxes and are the site that determines the direction of transcription. Also, the 72 base-pair repeats are transcriptional enhancers. When the SP1 protein interacts with the 21 base-pair repeats, it binds either the first or the last three GC boxes. Binding the first three initiates early expression, binding the last three initiates late expression. The function of the 72 base-pair repeats is to enhance the amount of stable RNA and increase the rate of synthesis. This is done by binding (dimerization) with the AP-1 transcription factor to give a primary transcript that is 3' polyadenylated and 5' capped.[ citation needed ]
SV40 is dormant and is asymptomatic in rhesus monkeys. The virus has been found in many macaque populations in the wild, where it rarely causes disease. However, in monkeys that are immunodeficient—due to, for example, infection with simian immunodeficiency virus —SV40 acts much like the human JC and BK polyomaviruses, producing kidney disease and sometimes a demyelinating disease similar to progressive multifocal leukoencephalopathy. In other species, particularly hamsters, SV40 causes a variety of tumors, generally sarcomas. In rats, the oncogenic SV40 large T antigen was used to establish a brain tumor model for primitive neuroectodermal tumor and medulloblastoma. [24]
The molecular mechanisms by which the virus reproduces and alters cell function were previously unknown, and research into SV40 vastly increased biologists' understanding of gene expression and the regulation of cell growth.[ citation needed ]
SV40 was first identified by Ben Sweet and Maurice Hilleman in 1960 when they found that between 10 and 30% of polio vaccines in the US were contaminated with SV40. [25] In 1962, Bernice Eddy described the SV40 oncogenic function inducing sarcoma and ependymomas in hamsters inoculated with monkeys cells infected with SV40. [26] The complete viral genome was sequenced by Weissman at Yale University (US) [27] in 1978 and also by Fiers and his team at the University of Ghent (Belgium). [28]
SV40 has become a totemic subject among anti-vaccination activists, where its presence in contaminated vaccine is accused of being a cause of a cancer "epidemic" and of being responsible for HIV/AIDS. [3]
A retrovirus is a type of virus that inserts a DNA copy of its RNA genome into the DNA of a host cell that it invades, thus changing the genome of that cell. After invading a host cell's cytoplasm, the virus uses its own reverse transcriptase enzyme to produce DNA from its RNA genome, the reverse of the usual pattern, thus retro (backward). The new DNA is then incorporated into the host cell genome by an integrase enzyme, at which point the retroviral DNA is referred to as a provirus. The host cell then treats the viral DNA as part of its own genome, transcribing and translating the viral genes along with the cell's own genes, producing the proteins required to assemble new copies of the virus. Many retroviruses cause serious diseases in humans, other mammals, and birds.
Poliovirus, the causative agent of polio, is a serotype of the species Enterovirus C, in the family of Picornaviridae. There are three poliovirus serotypes, numbered 1, 2, and 3.
Polyomaviridae is a family of viruses whose natural hosts are primarily mammals and birds. As of 2024, there are eight recognized genera. Fourteen species are known to infect humans, while others, such as Simian Virus 40, have been identified in humans to a lesser extent. Most of these viruses are very common and typically asymptomatic in most human populations studied. BK virus is associated with nephropathy in renal transplant and non-renal solid organ transplant patients, JC virus with progressive multifocal leukoencephalopathy, and Merkel cell virus with Merkel cell cancer.
An oncovirus or oncogenic virus is a virus that can cause cancer. This term originated from studies of acutely transforming retroviruses in the 1950–60s, when the term oncornaviruses was used to denote their RNA virus origin. With the letters RNA removed, it now refers to any virus with a DNA or RNA genome causing cancer and is synonymous with tumor virus or cancer virus. The vast majority of human and animal viruses do not cause cancer, probably because of longstanding co-evolution between the virus and its host. Oncoviruses have been important not only in epidemiology, but also in investigations of cell cycle control mechanisms such as the retinoblastoma protein.
Lentivirus is a genus of retroviruses that cause chronic and deadly diseases characterized by long incubation periods, in humans and other mammalian species. The genus includes the human immunodeficiency virus (HIV), which causes AIDS. Lentiviruses are distributed worldwide, and are known to be hosted in apes, cows, goats, horses, cats, and sheep as well as several other mammals.
Gammaretrovirus is a genus in the Retroviridae family. Example species are the murine leukemia virus and the feline leukemia virus. They cause various sarcomas, leukemias and immune deficiencies in mammals, reptiles and birds.
SV40 large T antigen is a hexamer protein that is a dominant-acting oncoprotein derived from the polyomavirus SV40. TAg is capable of inducing malignant transformation of a variety of cell types. The transforming activity of TAg is due in large part to its perturbation of the retinoblastoma (pRb) and p53 tumor suppressor proteins. In addition, TAg binds to several other cellular factors, including the transcriptional co-activators p300 and CBP, which may contribute to its transformation function. Similar proteins from related viruses are known as large tumor antigen in general.
Herpes simplex virus1 and 2, also known by their taxonomic names Human alphaherpesvirus 1 and Human alphaherpesvirus 2, are two members of the human Herpesviridae family, a set of viruses that produce viral infections in the majority of humans. Both HSV-1 and HSV-2 are very common and contagious. They can be spread when an infected person begins shedding the virus.
Viral vectors are modified viruses designed to deliver genetic material into cells. This process can be performed inside an organism or in cell culture. Viral vectors have widespread applications in basic research, agriculture, and medicine.
The Shope papilloma virus (SPV), also known as cottontail rabbit papilloma virus (CRPV) or Kappapapillomavirus 2, is a papillomavirus which infects certain leporids, causing keratinous carcinomas resembling horns, typically on or near the animal's head. The carcinomas can metastasize or become large enough to interfere with the host's ability to eat, causing starvation. Richard E. Shope investigated the horns and discovered the virus in 1933, an important breakthrough in the study of oncoviruses. The virus was originally discovered in cottontail rabbits in the Midwestern U.S. but can also infect brush rabbits, black-tailed jackrabbits, snowshoe hares, European rabbits, and domestic rabbits.
Merkel cell polyomavirus was first described in January 2008 in Pittsburgh, Pennsylvania. It was the first example of a human viral pathogen discovered using unbiased metagenomic next-generation sequencing with a technique called digital transcriptome subtraction. MCV is one of seven currently known human oncoviruses. It is suspected to cause the majority of cases of Merkel cell carcinoma, a rare but aggressive form of skin cancer. Approximately 80% of Merkel cell carcinoma (MCC) tumors have been found to be infected with MCV. MCV appears to be a common—if not universal—infection of older children and adults. It is found in respiratory secretions, suggesting that it might be transmitted via a respiratory route. However, it has also been found elsewhere, such as in shedded healthy skin and gastrointestinal tract tissues, thus its precise mode of transmission remains unknown. In addition, recent studies suggest that this virus may latently infect the human sera and peripheral blood mononuclear cells.
Mason-Pfizer monkey virus (M-PMV), formerly Simian retrovirus (SRV), is a species of retroviruses that usually infect and cause a fatal immune deficiency in Asian macaques. The ssRNA virus appears sporadically in mammary carcinoma of captive macaques at breeding facilities which expected as the natural host, but the prevalence of this virus in feral macaques remains unknown. M-PMV was transmitted naturally by virus-containing body fluids, via biting, scratching, grooming, and fighting. Cross contaminated instruments or equipment (fomite) can also spread this virus among animals.
Murine polyomavirus is an unenveloped double-stranded DNA virus of the polyomavirus family. The first member of the family discovered, it was originally identified by accident in the 1950s. A component of mouse leukemia extract capable of causing tumors, particularly in the parotid gland, in newborn mice was reported by Ludwik Gross in 1953 and identified as a virus by Sarah Stewart and Bernice Eddy at the National Cancer Institute, after whom it was once called "SE polyoma". Stewart and Eddy would go on to study related polyomaviruses such as SV40 that infect primates, including humans. These discoveries were widely reported at the time and formed the early stages of understanding of oncoviruses.
Vpx is a virion-associated protein encoded by human immunodeficiency virus type 2 HIV-2 and most simian immunodeficiency virus (SIV) strains, but that is absent from HIV-1. It is similar in structure to the protein Vpr that is carried by SIV and HIV-2 as well as HIV-1. Vpx is one of five accessory proteins carried by lentiviruses that enhances viral replication by inhibiting host antiviral factors.
Mastadenovirus is a genus of viruses in the family Adenoviridae. Humans and other mammals serve as natural hosts. There are 51 species in this genus. The genus as a whole includes many very common causes of human infection, estimated to be responsible for 2 to 5% of all respiratory infections, as well as gastrointestinal and eye infections. Symptoms are usually mild.
Janet S Butel is the Chairman and Distinguished Service Professor in the molecular virology and microbiology department at Baylor College of Medicine. Her area of expertise is on polyomavirus pathogenesis of infections and disease. She has more than 120 publications on PubMed. She also has 6 publications in Nature, which is considered one of the most prestigious science journals. She is a member of 9 different organizations and has 13 honors and awards.
Agnoprotein is a protein expressed by some members of the polyomavirus family from a gene called the agnogene. Polyomaviruses in which it occurs include two human polyomaviruses associated with disease, BK virus and JC virus, as well as the simian polyomavirus SV40.
The large tumor antigen is a protein encoded in the genomes of polyomaviruses, which are small double-stranded DNA viruses. LTag is expressed early in the infectious cycle and is essential for viral proliferation. Containing four well-conserved protein domains as well as several intrinsically disordered regions, LTag is a fairly large multifunctional protein; in most polyomaviruses, it ranges from around 600-800 amino acids in length. LTag has two primary functions, both related to replication of the viral genome: it unwinds the virus's DNA to prepare it for replication, and it interacts with proteins in the host cell to dysregulate the cell cycle so that the host's DNA replication machinery can be used to replicate the virus's genome. Some polyomavirus LTag proteins - most notably the well-studied SV40 large tumor antigen from the SV40 virus - are oncoproteins that can induce neoplastic transformation in the host cell.
The small tumor antigen is a protein encoded in the genomes of polyomaviruses, which are small double-stranded DNA viruses. STag is expressed early in the infectious cycle and is usually not essential for viral proliferation, though in most polyomaviruses it does improve replication efficiency. The STag protein is expressed from a gene that overlaps the large tumor antigen (LTag) such that the two proteins share an N-terminal DnaJ-like domain but have distinct C-terminal regions. STag is known to interact with host cell proteins, most notably protein phosphatase 2A (PP2A), and may activate the expression of cellular proteins associated with the cell cycle transition to S phase. In some polyomaviruses - such as the well-studied SV40, which natively infects monkeys - STag is unable to induce neoplastic transformation in the host cell on its own, but its presence may increase the transforming efficiency of LTag. In other polyomaviruses, such as Merkel cell polyomavirus, which causes Merkel cell carcinoma in humans, STag appears to be important for replication and to be an oncoprotein in its own right.
The middle tumor antigen is a protein encoded in the genomes of some polyomaviruses, which are small double-stranded DNA viruses. MTag is expressed early in the infectious cycle along with two other related proteins, the small tumor antigen and large tumor antigen. MTag occurs only in a few known polyomaviruses, while STag and LTag are universal - it was first identified in mouse polyomavirus (MPyV), the first polyomavirus discovered, and also occurs in hamster polyomavirus. In MPyV, MTag is an efficient oncoprotein that can be sufficient to induce neoplastic transformation in some cells.