SV40 large T antigen

Last updated
SV40 large T antigen
1n25.jpg
SV40 T helicase domain hexamer, Simian virus.
Identifiers
Organism Simian virus 40
Symbol?
UniProt P03070
Search for
Structures Swiss-model
Domains InterPro

SV40 large T antigen ( Simian Vacuolating Virus 40 TAg) is a hexamer protein that is a dominant-acting oncoprotein derived from the polyomavirus SV40. TAg is capable of inducing malignant transformation of a variety of cell types. The transforming activity of TAg is due in large part to its perturbation of the retinoblastoma (pRb) [1] and p53 tumor suppressor proteins. [2] In addition, TAg binds to several other cellular factors, including the transcriptional co-activators p300 and CBP, which may contribute to its transformation function. [3] Similar proteins from related viruses are known as large tumor antigen in general.

Contents

TAg is a product of an early gene transcribed during viral infection by SV40, and is involved in viral genome replication and regulation of host cell cycle. SV40 is a double-stranded, circular DNA virus belonging to the Polyomaviridae (earlier Papovavirus) family, Orthopolyomavirus genus. Polyomaviruses infect a wide variety of vertebrates and cause solid tumours at multiple sites. SV40 was isolated by Sweet and Maurice Hilleman in 1960 in primary monkey kidney cell cultures being used to grow Sabin OPV. [4]

Domains

The TAg has a CUL7-binding domain, a TP53-binding domain, a Zinc finger, and a Superfamily 3 ATPase/Helicase domain. It has two motifs, one for nuclear localization signal, the other being the LXCXE motif. [5]

Mechanism

After entering the cell, the viral genes are transcribed by host cell RNA polymerase II to produce early mRNAs. Because of the relative simplicity of the genome, polyomaviruses are heavily dependent on the cell for transcription and genome replication. The cis-acting regulatory element surrounding the origin of replication directs transcription, and T-antigen directs transcription and replication.

SV40 DNA replication is initiated by binding of large T-antigen to the origin region of the genome. The function of T-antigen is controlled by phosphorylation, which attenuates the binding to the SV40 origin. Protein-protein interactions between T-antigen and DNA polymerase-alpha directly stimulate replication of the virus genome.

T-antigen also binds and inactivates tumor suppressor proteins (p53, p105-Rb). This causes the cells to leave G1 phase and enter into S phase, which promotes DNA replication.

The SV40 genome is very small and does not encode all the information necessary for DNA replication. Therefore, it is essential for the host cell to enter S phase, when cell DNA and the viral genome are replicated together. Therefore, in addition to increasing transcription, another function of T-antigen is to alter the cellular environment to permit virus genome replication.

Nuclear localization signal

The SV40 large T-antigen has been used as a model protein to study nuclear localization signals (NLSs). [6] It is imported into the nucleus by its interaction with importin α. [7] The NLS sequence is PKKKRKV. [6]

Interaction with pRb via the LXCXE motif

SV40 large TAg, other polyomavirus large T antigens, adenovirus E1a proteins, and oncogenic human papillomavirus E7 proteins share a structural motif that encodes a high-affinity pRb-binding domain. [8] [9] A diagnostic pattern for a high-affinity pRb-binding domain was refined using an artificial intelligence pattern-induction program running on a massively parallel supercomputer (Connection Machine-2). [9] The motif is characterized by an Asp, Asn or Thr residue followed by three invariant amino acids, interspersed with non-conserved amino acids (designated by x, where x cannot be a Lys or Arg residue). [9] A negatively charged region frequently follows carboxy-terminal to the pRb-binding domain. [9]

{Asp/Asn/Thr} – Leu – x – Cys – x – Glu – x – ... {negatively charged region}

Hydrophobic and electrostatic properties are highly conserved in this motif. For example, a local hydrophobicity maximum occurs in the vicinity of the invariant Leu residue. [9] A net negative charge occurs within 3 residues amino-terminal to the invariant Leu residue; furthermore, positively charged amino acids (Lys or Arg) are not found within the Leu – x – Cys – x – Glu sequence, nor in the positions immediately flanking this sequence. [9] The pRb-binding motif and negatively charged region match to a segment of SV40 TAg beginning at residue 102 and ending at residue 115 as shown below:

AsnLeuPheCysSerGluGluMetProSerSerAspAspGlu

Functional studies of TAg proteins bearing mutations within this segment (amino acid positions 106 to 114, inclusive) demonstrate that certain deleterious mutations abolish malignant transforming activity. [10] For example, mutation of the invariant Glu at position 107 to Lys-107 completely abolishes transforming activity. [10] Deleterious mutations within this segment (amino acid positions 105 to 114, inclusive) also impair binding of the mutant TAg protein species to pRb, [1] implying a correlation between transforming activity and the ability of TAg to bind pRb. [1] A detailed computerized bioinformatics analysis, [9] as well as an x-ray crystallography study, [11] have demonstrated the biophysical basis for the interaction between this region of TAg and pRb. TAg residues 103 to 109 form an extended loop structure that binds tightly in a surface groove of pRb. [11] In the crystal structure, Leu-103 is positioned so that it makes van der Waals contacts with the hydrophobic side chains of Val-714 and Leu-769 in pRb. [11] A number of hydrogen bonds also stabilize the TAg–pRb complex. [11] For example, the side chain of Glu-107 forms hydrogen bonds by accepting hydrogens from the main chain amide groups of Phe-721 and Lys-722 in pRb. [11] The mutation of Glu-107 to Lys-107 is expected to result in loss of these hydrogen bonds. [11] Furthermore, the side chain of Lys-107 would likely have energetically unfavorable interactions with the amide of Phe-721 or Lys-722, [11] destabilizing the complex.

Strong experimental evidence confirms that positively charged amino acids (Lys or Arg) significantly weaken the binding interaction with pRB when positioned in the vicinity of the Leu – x – Cys – x – Glu sequence. [12] This is likely due to the fact that the binding surface on pRb features six lysine residues, which will tend to repel positive residues within or flanking the Leu – x – Cys – x – Glu sequence. [12]

Of note, the highest-risk oncogenic human papillomavirus (HPV) strains (16, 18, 31, 45) encode E7 proteins featuring high-affinity pRb-binding domains which match the diagnostic pattern given above. [9]

Related Research Articles

DnaG is a bacterial DNA primase and is encoded by the dnaG gene. The enzyme DnaG, and any other DNA primase, synthesizes short strands of RNA known as oligonucleotides during DNA replication. These oligonucleotides are known as primers because they act as a starting point for DNA synthesis. DnaG catalyzes the synthesis of oligonucleotides that are 10 to 60 nucleotides long, however most of the oligonucleotides synthesized are 11 nucleotides. These RNA oligonucleotides serve as primers, or starting points, for DNA synthesis by bacterial DNA polymerase III. DnaG is important in bacterial DNA replication because DNA polymerase cannot initiate the synthesis of a DNA strand, but can only add nucleotides to a preexisting strand. DnaG synthesizes a single RNA primer at the origin of replication. This primer serves to prime leading strand DNA synthesis. For the other parental strand, the lagging strand, DnaG synthesizes an RNA primer every few kilobases (kb). These primers serve as substrates for the synthesis of Okazaki fragments.

<span class="mw-page-title-main">Oncovirus</span> Viruses that can cause cancer

An oncovirus or oncogenic virus is a virus that can cause cancer. This term originated from studies of acutely transforming retroviruses in the 1950–60s, when the term "oncornaviruses" was used to denote their RNA virus origin. With the letters "RNA" removed, it now refers to any virus with a DNA or RNA genome causing cancer and is synonymous with "tumor virus" or "cancer virus". The vast majority of human and animal viruses do not cause cancer, probably because of longstanding co-evolution between the virus and its host. Oncoviruses have been important not only in epidemiology, but also in investigations of cell cycle control mechanisms such as the retinoblastoma protein.

A nuclear localization signalorsequence (NLS) is an amino acid sequence that 'tags' a protein for import into the cell nucleus by nuclear transport. Typically, this signal consists of one or more short sequences of positively charged lysines or arginines exposed on the protein surface. Different nuclear localized proteins may share the same NLS. An NLS has the opposite function of a nuclear export signal (NES), which targets proteins out of the nucleus.

Neurophysin I is a carrier protein with a size of 10 KDa and contains 90 to 97 amino acids. It is a cleavage product of preprooxyphysin. It is a neurohypophysial hormone that is transported in vesicles with oxytocin, the other cleavage product, along axons, from magnocellular neurons of the hypothalamus to the posterior lobe of the pituitary. Although it is stored in neurosecretory granules with oxytocin and released with oxytocin, its biological action is unclear.

<span class="mw-page-title-main">Hemagglutinin esterase</span> Glycoprotein present in some enveloped viruses

Hemagglutinin esterase (HEs) is a glycoprotein that certain enveloped viruses possess and use as an invading mechanism. HEs helps in the attachment and destruction of certain sialic acid receptors that are found on the host cell surface. Viruses that possess HEs include influenza C virus, toroviruses, and coronaviruses of the subgenus Embecovirus. HEs is a dimer transmembrane protein consisting of two monomers, each monomer is made of three domains. The three domains are: membrane fusion, esterase, and receptor binding domains.

A DNA-binding domain (DBD) is an independently folded protein domain that contains at least one structural motif that recognizes double- or single-stranded DNA. A DBD can recognize a specific DNA sequence or have a general affinity to DNA. Some DNA-binding domains may also include nucleic acids in their folded structure.

Molecular mimicry is defined as the theoretical possibility that sequence similarities between foreign and self-peptides are sufficient to result in the cross-activation of autoreactive T or B cells by pathogen-derived peptides. Despite the prevalence of several peptide sequences which can be both foreign and self in nature, a single antibody or TCR can be activated by just a few crucial residues which stresses the importance of structural homology in the theory of molecular mimicry. Upon the activation of B or T cells, it is believed that these "peptide mimic" specific T or B cells can cross-react with self-epitopes, thus leading to tissue pathology (autoimmunity). Molecular mimicry is a phenomenon that has been just recently discovered as one of several ways in which autoimmunity can be evoked. A molecular mimicking event is, however, more than an epiphenomenon despite its low statistical probability of occurring and these events have serious implications in the onset of many human autoimmune disorders.

<span class="mw-page-title-main">Neurophysin II</span>

Neurophysin II is a carrier protein with a size of 19,687.3 Da and is made up of a dimer of two virtually identical chains of amino acids. Neurophysin II is a cleavage product of the AVP gene. It is a neurohypophysial hormone that is transported in vesicles with vasopressin, the other cleavage product, along axons, from magnocellular neurons of the hypothalamus to the posterior lobe of the pituitary. Although it is stored in neurosecretory granules with vasopressin and released with vasopressin into the bloodstream, its biological action is unclear. Neurophysin II is also known as a stimulator of prolactin secretion.

<span class="mw-page-title-main">TEV protease</span>

TEV protease is a highly sequence-specific cysteine protease from Tobacco Etch Virus (TEV). It is a member of the PA clan of chymotrypsin-like proteases. Due to its high sequence specificity it is frequently used for the controlled cleavage of fusion proteins in vitro and in vivo.

<span class="mw-page-title-main">HIVEP1</span> Protein-coding gene in the species Homo sapiens

Zinc finger protein 40 is a protein that in humans is encoded by the HIVEP1 gene.

<span class="mw-page-title-main">IFFO1</span>

Intermediate filament family orphan 1 is a protein that in humans is encoded by the IFFO1 gene. IFFO1 has uncharacterized function and a weight of 61.98 kDa. IFFO1 proteins play an important role in the cytoskeleton and the nuclear envelope of most eukaryotic cell types.

CNMamide (CNMa) is a cyclic neuropeptide identified by computational analysis of Drosophila melanogaster protein sequences and named after its C-terminal ending motif. A gene encoding CNMa was found in most arthropods and comparison among the precursor sequences of several representative species revealed high conservation, particularly in the region of the predicted mature peptide. Two conserved cysteine residues enveloping four amino acids form a disulfide bond and were shown to be important for binding of the peptide to its receptor. Expression of CNMa was confirmed in the larval and adult brain of D. melanogaster but the function of the peptide has not been elucidated yet.

Centruroides suffusus suffusus toxin II (CssII) is a scorpion β-toxin from the venom of the scorpion Centruroides suffusus suffusus. CssII primarily affects voltage-gated sodium channels by causing a hyperpolarizing shift of voltage dependence, a reduction in peak transient current, and the occurrence of resurgent currents.

<span class="mw-page-title-main">Agnoprotein</span> Viral protein found in some polyomaviruses

Agnoprotein is a protein expressed by some members of the polyomavirus family from a gene called the agnogene. Polyomaviruses in which it occurs include two human polyomaviruses associated with disease, BK virus and JC virus, as well as the simian polyomavirus SV40.

<span class="mw-page-title-main">Large tumor antigen</span>

The large tumor antigen is a protein encoded in the genomes of polyomaviruses, which are small double-stranded DNA viruses. LTag is expressed early in the infectious cycle and is essential for viral proliferation. Containing four well-conserved protein domains as well as several intrinsically disordered regions, LTag is a fairly large multifunctional protein; in most polyomaviruses, it ranges from around 600-800 amino acids in length. LTag has two primary functions, both related to replication of the viral genome: it unwinds the virus's DNA to prepare it for replication, and it interacts with proteins in the host cell to dysregulate the cell cycle so that the host's DNA replication machinery can be used to replicate the virus's genome. Some polyomavirus LTag proteins - most notably the well-studied SV40 large tumor antigen from the SV40 virus - are oncoproteins that can induce neoplastic transformation in the host cell.

<span class="mw-page-title-main">Small tumor antigen</span>

The small tumor antigen is a protein encoded in the genomes of polyomaviruses, which are small double-stranded DNA viruses. STag is expressed early in the infectious cycle and is usually not essential for viral proliferation, though in most polyomaviruses it does improve replication efficiency. The STag protein is expressed from a gene that overlaps the large tumor antigen (LTag) such that the two proteins share an N-terminal DnaJ-like domain but have distinct C-terminal regions. STag is known to interact with host cell proteins, most notably protein phosphatase 2A (PP2A), and may activate the expression of cellular proteins associated with the cell cycle transition to S phase. In some polyomaviruses - such as the well-studied SV40, which natively infects monkeys - STag is unable to induce neoplastic transformation in the host cell on its own, but its presence may increase the transforming efficiency of LTag. In other polyomaviruses, such as Merkel cell polyomavirus, which causes Merkel cell carcinoma in humans, STag appears to be important for replication and to be an oncoprotein in its own right.

The middle tumor antigen is a protein encoded in the genomes of some polyomaviruses, which are small double-stranded DNA viruses. MTag is expressed early in the infectious cycle along with two other related proteins, the small tumor antigen and large tumor antigen. MTag occurs only in a few known polyomaviruses, while STag and LTag are universal - it was first identified in mouse polyomavirus (MPyV), the first polyomavirus discovered, and also occurs in hamster polyomavirus. In MPyV, MTag is an efficient oncoprotein that can be sufficient to induce neoplastic transformation in some cells.

<span class="mw-page-title-main">Vejocalcin</span> Toxin

Vejocalcin (VjCa, also called Vejocalcine) is a toxin from the venom of the Mexican scorpion Vaejovis mexicanus. Vejocalcin is a member of the calcin family of toxins. It acts as a cell-penetrating peptide (CPP); it binds with high affinity and specificity to skeletal ryanodine receptor 1 (RYR1) of the sarcoplasmic reticulum, thereby triggering calcium release from intracellular Ca2+ stores.

Transmembrane protein 39B (TMEM39B) is a protein that in humans is encoded by the gene TMEM39B. TMEM39B is a multi-pass membrane protein with eight transmembrane domains. The protein localizes to the plasma membrane and vesicles. The precise function of TMEM39B is not yet well-understood by the scientific community, but differential expression is associated with survival of B cell lymphoma, and knockdown of TMEM39B is associated with decreased autophagy in cells infected with the Sindbis virus. Furthermore, the TMEM39B protein been found to interact with the SARS-CoV-2 ORF9C protein. TMEM39B is expressed at moderate levels in most tissues, with higher expression in the testis, placenta, white blood cells, adrenal gland, thymus, and fetal brain.

LmαTX5 is an α-scorpion toxin which inhibits the fast inactivation of voltage-gated sodium channels. It has been identified through transcriptome analysis of the venom gland of Lychas mucronatus, also known as the Chinese swimming scorpion – a scorpion species which is widely distributed in Southeast Asia.

References

  1. 1 2 3 DeCaprio JA, Ludlow JW, Figge J, Shew JY, Huang CM, Lee WH, Marsillo E, Paucha E, Livingston DM (15 July 1988). "SV40 large tumor antigen forms a specific complex with the product of the retinoblastoma susceptibility gene". Cell. 54 (2): 275–83. doi:10.1016/0092-8674(88)90559-4. PMID   2839300. S2CID   37600468.
  2. Ahuja D, Sáenz-Robles MT, Pipas JM (2005). "SV40 large T antigen targets multiple cellular pathways to elicit cellular transformation". Oncogene. 24 (52): 7729–45. doi: 10.1038/sj.onc.1209046 . PMID   16299533.
  3. Ali SH, DeCaprio JA (2001). "Cellular transformation by SV40 large T antigen: interaction with host proteins". Semin Cancer Biol 11 (1): 15–23. Archived 2004-01-19 at the Wayback Machine
  4. Sweet BH, Hilleman MR (November 1960). "The vacuolating virus, S.V. 40". Proc. Soc. Exp. Biol. Med. 105 (2): 420–427. doi:10.3181/00379727-105-26128. PMID   13774265. S2CID   38744505.
  5. P03070 ; InterPro view for P03070.
  6. 1 2 Dingwall C, Laskey RA (December 1991). "Nuclear targeting sequences – a consensus?". Trends Biochem. Sci. 16 (12): 478–81. doi:10.1016/0968-0004(91)90184-W. PMID   1664152.
  7. Fontes MR, Teh T, Kobe B (April 2000). "Structural basis of recognition of monopartite and bipartite nuclear localization sequences by mammalian importin-alpha". J. Mol. Biol. 297 (5): 1183–94. doi:10.1006/jmbi.2000.3642. PMID   10764582.
  8. Figge J, Smith TF (14 July 1988). "Cell division sequence motif". Nature. 334 (6178): 109. doi: 10.1038/334109a0 . PMID   3290690.
  9. 1 2 3 4 5 6 7 8 Figge J, Breese K, Vajda S, Zhu QL, Eisele L, Andersen TT, MacColl R, Friedrich T, Smith TF (February 1993). "The binding domain structure of retinoblastoma-binding proteins". Protein Science. 2 (2): 155–64. doi:10.1002/pro.5560020204. PMC   2142352 . PMID   8382993.
  10. 1 2 Chen S, Paucha E (July 1990). "Identification of a region of simian virus 40 large T antigen required for cell transformation". Journal of Virology. 64 (7): 3350–7. doi:10.1128/JVI.64.7.3350-3357.1990. PMC   249578 . PMID   2161944.
  11. 1 2 3 4 5 6 7 Kim HY, Ahn BY, Cho Y (15 January 2001). "Structural basis for the inactivation of retinoblastoma tumor suppressor by SV40 large T antigen". The EMBO Journal. 20 (1–2): 295–304. doi:10.1093/emboj/20.1.295. PMC   140208 . PMID   11226179.
  12. 1 2 Singh M, Krajewski M, Mikolajka A, Holak TA (11 November 2005). "Molecular determinants for the complex formation between the retinoblastoma protein and LXCXE sequences". The Journal of Biological Chemistry. 280 (45): 37868–76. doi: 10.1074/jbc.M504877200 . PMID   16118215.