Envelope glycoprotein gp120 | |||||||||
---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||
Symbol | GP120 | ||||||||
Pfam | PF00516 | ||||||||
InterPro | IPR000777 | ||||||||
SCOP2 | 1gc1 / SCOPe / SUPFAM | ||||||||
|
Envelope glycoprotein GP120 (or gp120) is a glycoprotein exposed on the surface of the HIV envelope. It was discovered by Professors Tun-Hou Lee and Myron "Max" Essex of the Harvard School of Public Health in 1984. [1] The 120 in its name comes from its molecular weight of 120 kDa. Gp120 is essential for virus entry into cells as it plays a vital role in attachment to specific cell surface receptors. These receptors are DC-SIGN, [2] Heparan Sulfate Proteoglycan [3] and a specific interaction with the CD4 receptor, [4] particularly on helper T-cells. Binding to CD4 induces the start of a cascade of conformational changes in gp120 and gp41 that lead to the fusion of the viral membrane with the host cell membrane. Binding to CD4 is mainly electrostatic although there are van der Waals interactions and hydrogen bonds. [5]
Gp120 is coded by the HIV env gene, which is around 2.5 kb long and codes for around 850 amino acids. [6] The primary env product is the protein gp160, which gets cleaved to gp120 (~480 amino acids) and gp41 (~345 amino acids) in the endoplasmatic reticulum by the cellular protease furin. [7] The crystal structure of core gp120 shows an organization with an outer domain, an inner domain with respect to its termini and a bridging sheet. Gp120 is anchored to the viral membrane, or envelope, via non-covalent bonds with the transmembrane glycoprotein, gp41. Three gp120s and gp41s combine in a trimer of heterodimers to form the envelope spike, [8] which mediates attachment to and entry into the host cell.
Since gp120 plays a vital role in the ability of HIV-1 to enter CD4+ cells, its evolution is of particular interest. Many neutralizing antibodies bind to sites located in variable regions of gp120, so mutations in these regions will be selected for strongly. [9] The diversity of env has been shown to increase by 1-2% per year in HIV-1 group M and the variable units are notable for rapid changes in amino acid sequence length. Increases in gp120 variability result in significantly elevated levels of viral replication, indicating an increase in viral fitness in individuals infected by diverse HIV-1 variants. [10] Further studies have shown that variability in potential N-linked glycosylation sites (PNGSs) also result in increased viral fitness. PNGSs allow for the binding of long-chain carbohydrates to the high variability regions of gp120, so the authors hypothesize that the number of PNGSs in env might affect the fitness of the virus by providing more or less sensitivity to neutralizing antibodies. The presence of large carbohydrate chains extending from gp120 might obscure possible antibody binding sites. [11]
The boundaries of the potential to add and eliminate PNGSs are naively explored by growing viral populations following each new infection. [12] While the transmitting host has developed a neutralizing antibody response to gp120, the newly infected host lacks immune recognition of the virus. Sequence data shows that initial viral variants in an immunologically naïve host have few glycosylation sites and shorter exposed variable loops. This may facilitate viral ability to bind host cell receptors. [13] As the host immune system develops antibodies against gp120, immune pressures seem to select for increased glycosylation, particularly on the exposed variable loops of gp120. [14] Consequently, insertions in env, which confer more PNGSs on gp120 may be more tolerated by the virus as higher glycan density promotes the viral ability to evade antibodies and thus promotes higher viral fitness. [15] In considering how much PNGS density could theoretically change, there may be an upper bound to PNGS number due to its inhibition of gp120 folding, but if the PNGS number decreases substantially, then the virus is too easily detected by neutralizing antibodies. [12] Therefore, a stabilizing selection balance between low and high glycan densities is likely established. A lower number of bulky glycans improves viral replication efficiency and higher number on the exposed loops aids host immune evasion via disguise.[ citation needed ]
The relationship between gp120 and neutralizing antibodies is an example of Red Queen evolutionary dynamics. Continuing evolutionary adaptation is required for the viral envelope protein to maintain fitness relative to the continuing evolutionary adaptations of the host immune neutralizing antibodies, and vice versa, forming a coevolving system. [15]
Since CD4 receptor binding is the most obvious step in HIV infection, gp120 was among the first targets of HIV vaccine research. Efforts to develop HIV vaccines targeting gp120, however, have been hampered by the chemical and structural properties of gp120, which make it difficult for antibodies to bind to it. gp120 can also easily be shed from the surface of the virus and captured by T cells due to its loose binding with gp41. A conserved region in the gp120 glycoprotein that is involved in the metastable attachment of gp120 to CD4 has been identified and targeting of invariant region has been achieved with a broadly neutralising antibody, IgG1-b12. [16] [17]
NIH research published in Science reports the isolation of 3 antibodies that neutralize 90% of HIV-1 strains at the CD4bs region of gp120, potentially offering a therapeutic and vaccine strategy. However, most antibodies that bind the CDbs region of gp120 do not neutralize HIV, [18] and rare ones that do such as IgG1-b12 have unusual properties such as asymmetry of the Fab arms [19] or in their positioning. [20] Unless a gp120-based vaccine can be designed to elicit antibodies with strongly neutralizing antiviral properties, there is concern that breakthrough infection leading to humoral production of high levels of non-neutralizing antibodies targeting the CD4 binding site of gp120 is associated with faster disease progression to AIDS. [21]
The protein gp120 is necessary during the initial binding of HIV to its target cell. Consequently, anything which binds to gp120 or its targets can physically block gp120 from binding to a cell. Only one such agent, Maraviroc, which binds the co-receptor CCR5 is currently licensed and in clinical use. No agent targeting gp120's main first cellular interaction partner, CD4, is currently licensed since interfering with such a central molecule of the immune system can cause toxic side effects, such as the anti-CD4 monoclonal antibody OKT4. Targeting gp120 itself has proven extremely difficult due to its high degree of variability and shielding. Fostemsavir (BMS-663068) is a methyl phosphate prodrug of the small molecule inhibitor BMS-626529, which prevents viral entry by binding to the viral envelope gp120 and interfering with virus attachment to the host CD4 receptor. [22]
The HIV viral protein gp120 induces apoptosis of neuronal cells by inhibiting levels of furin and tissue plasminogen activator, enzymes responsible for converting pBDNF to mBDNF. [23] gp120 induces mitochondrial-death proteins like caspases which may influence the upregulation of the death receptor Fas leading to apoptosis of neuronal cells, [24] gp120 induces oxidative stress in the neuronal cells, [25] and it is also known to activate STAT1 and induce interleukins IL-6 and IL-8 secretion in neuronal cells. [26]
The human immunodeficiency viruses (HIV) are two species of Lentivirus that infect humans. Over time, they cause acquired immunodeficiency syndrome (AIDS), a condition in which progressive failure of the immune system allows life-threatening opportunistic infections and cancers to thrive. Without treatment, average survival time after infection with HIV is estimated to be 9 to 11 years, depending on the HIV subtype.
An HIV vaccine is a potential vaccine that could be either a preventive vaccine or a therapeutic vaccine, which means it would either protect individuals from being infected with HIV or treat HIV-infected individuals.
In molecular biology, CD4 is a glycoprotein that serves as a co-receptor for the T-cell receptor (TCR). CD4 is found on the surface of immune cells such as T helper cells, monocytes, macrophages, and dendritic cells. It was discovered in the late 1970s and was originally known as leu-3 and T4 before being named CD4 in 1984. In humans, the CD4 protein is encoded by the CD4 gene.
The genome and proteins of HIV (human immunodeficiency virus) have been the subject of extensive research since the discovery of the virus in 1983. "In the search for the causative agent, it was initially believed that the virus was a form of the Human T-cell leukemia virus (HTLV), which was known at the time to affect the human immune system and cause certain leukemias. However, researchers at the Pasteur Institute in Paris isolated a previously unknown and genetically distinct retrovirus in patients with AIDS which was later named HIV." Each virion comprises a viral envelope and associated matrix enclosing a capsid, which itself encloses two copies of the single-stranded RNA genome and several enzymes. The discovery of the virus itself occurred two years following the report of the first major cases of AIDS-associated illnesses.
Gp41 also known as glycoprotein 41 is a subunit of the envelope protein complex of retroviruses, including human immunodeficiency virus (HIV). Gp41 is a transmembrane protein that contains several sites within its ectodomain that are required for infection of host cells. As a result of its importance in host cell infection, it has also received much attention as a potential target for HIV vaccines.
Entry inhibitors, also known as fusion inhibitors, are a class of antiviral drugs that prevent a virus from entering a cell, for example, by blocking a receptor. Entry inhibitors are used to treat conditions such as HIV and hepatitis D.
Env is a viral gene that encodes the protein forming the viral envelope. The expression of the env gene enables retroviruses to target and attach to specific cell types, and to infiltrate the target cell membrane.
CD4 immunoadhesin is a recombinant fusion protein consisting of a combination of CD4 and the fragment crystallizable region, similarly known as immunoglobulin. It belongs to the antibody (Ig) gene family. CD4 is a surface receptor for human immunodeficiency virus (HIV). The CD4 immunoadhesin molecular fusion allow the protein to possess key functions from each independent subunit. The CD4 specific properties include the gp120-binding and HIV-blocking capabilities. Properties specific to immunoglobulin are the long plasma half-life and Fc receptor binding. The properties of the protein means that it has potential to be used in AIDS therapy as of 2017. Specifically, CD4 immunoadhesin plays a role in antibody-dependent cell-mediated cytotoxicity (ADCC) towards HIV-infected cells. While natural anti-gp120 antibodies exhibit a response towards uninfected CD4-expressing cells that have a soluble gp120 bound to the CD4 on the cell surface, CD4 immunoadhesin, however, will not exhibit a response. One of the most relevant of these possibilities is its ability to cross the placenta.
HLA class II histocompatibility antigen, DM beta chain is a protein that in humans is encoded by the HLA-DMB gene.
HLA class II histocompatibility antigen, DM alpha chain is a protein that in humans is encoded by the HLA-DMA gene.
HLA class II histocompatibility antigen, DO alpha chain is a protein that in humans is encoded by the HLA-DOA gene.
HLA class II histocompatibility antigen, DO beta chain is a protein that in humans is encoded by the HLA-DOB gene.
Neutral alpha-glucosidase C is an enzyme that in humans is encoded by the GANC gene.
Neutral alpha-glucosidase AB is an enzyme that in humans is encoded by the GANAB gene.
HLA class II histocompatibility antigen, DQ(6) alpha chain is a protein that in humans is encoded by the HLA-DQA2 gene. Also known as HLA-DXA or DAAP-381D23.2, it is part of the human leucocyte antigen system.
HLA class II histocompatibility antigen, DX beta chain is a protein that in humans is encoded by the HLA-DQB2 gene.
Mannosyl-oligosaccharide glucosidase is an enzyme that in humans is encoded by the MOGS gene.
GBA2 is the gene that encodes the enzyme non-lysosomal glucosylceramidase in humans. It has glucosylceramidase activity.
2F5 is a broadly neutralizing human monoclonal antibody (mAb) that has been shown to bind to and neutralize HIV-1 in vitro, making it a potential candidate for use in vaccine synthesis. 2F5 recognizes an epitope in the membrane-proximal external region (MPER) of HIV-1 gp41. 2F5 then binds to this epitope and its constant region interacts with the viral lipid membrane, which neutralizes the virus.
A neutralizing antibody (NAb) is an antibody that defends a cell from a pathogen or infectious particle by neutralizing any effect it has biologically. Neutralization renders the particle no longer infectious or pathogenic. Neutralizing antibodies are part of the humoral response of the adaptive immune system against viruses, intracellular bacteria and microbial toxin. By binding specifically to surface structures (antigen) on an infectious particle, neutralizing antibodies prevent the particle from interacting with its host cells it might infect and destroy.
{{cite journal}}
: CS1 maint: multiple names: authors list (link)