HIV-1 protease

Last updated
HIV-1 Protease (Retropepsin)
Aspartic protease.png
HIV-1 protease dimer in white and grey, with peptide substrate in black and active site aspartate side chains in red. ( PDB: 1KJF )
Identifiers
EC no. 3.4.23.16
CAS no. 144114-21-6
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins

HIV-1 protease or PR is a retroviral aspartyl protease (retropepsin), an enzyme involved with peptide bond hydrolysis in retroviruses, that is essential for the life-cycle of HIV, the retrovirus that causes AIDS. [1] [2] HIV-1 PR cleaves newly synthesized polyproteins (namely, Gag and Gag-Pol [3] ) at nine cleavage sites to create the mature protein components of an HIV virion, the infectious form of a virus outside of the host cell. [4] Without effective HIV-1 PR, HIV virions remain uninfectious. [5] [6]

Contents

Structure

HIV-1 protease labelled according to its resemblance to an English Bulldog or a fat cat. The blue and cyan-green ribbons depict the peptide backbone of a wild-type (1D4S ) and a mutant (1KZK ) structure, respectively. Molecular bulldog face.png
HIV-1 protease labelled according to its resemblance to an English Bulldog or a fat cat. The blue and cyan-green ribbons depict the peptide backbone of a wild-type ( 1D4S ) and a mutant ( 1KZK ) structure, respectively.

Mature HIV protease exists as a 22 kDa homodimer, with each subunit made up of 99 amino acids. [1] A single active site lies between the identical subunits and has the characteristic Asp-Thr-Gly (Asp25, Thr26 and Gly27) catalytic triad sequence common to aspartic proteases. [8] As HIV-1 PR can only function as a dimer, the mature protease contains two Asp25 amino acids, one from each monomer, that act in conjunction with each other as the catalytic residues. [9] Additionally, HIV protease has two molecular "flaps" which move a distance of up to 7 Å when the enzyme becomes associated with a substrate. [10] This can be visualized with animations of the flaps opening and closing.

Biosynthesis

The Gag-Pol region containing the protease gene flanked by p6 at the N-terminus and reverse transcriptase at the C-terminus. "Hxb2genome" Hxb2genome.gif
The Gag-Pol region containing the protease gene flanked by p6 at the N-terminus and reverse transcriptase at the C-terminus. "Hxb2genome"

Precursor

The Gag-Pol polyprotein, which contains premature coding proteins, including HIV-1 PR. [9] PR is located between the reverse transcriptase (which is at the C-terminus of PR) and the p6pol (which is at the N-terminus of PR) of the transframe region (TFR). [11]

In order for this precursor to become a functional protein, each monomer must associate with another HIV-1 PR monomer to form a functional catalytic active site by each contributing the Asp25 of their respective catalytic triads. [9]

Synthesis Mechanism

When viral HIV-RNA enters the cell, it is accompanied by a reverse transcriptase, an integrase, and a mature HIV-1 PR. The reverse transcriptase converts viral RNA into DNA, facilitating the integrase's role in incorporating viral genetic information with the host cell DNA. [2] The viral DNA can either remain dormant in the nucleus or be transcribed into mRNA and translated by the host cell into the Gag-Pol polyprotein, which would then be cleaved into individual functional proteins (including a newly synthesized HIV-1 PR) by the mature HIV-1 PR. [9]

The HIV-1 PR precursor catalyzes its own production by facilitating its cleavage from the Gag-Pol polyprotein in a mechanism known as auto-processing. Auto-processing of HIV-1 PR is characterized by two sequential steps: (1) the intramolecular cleavage of the N-terminus at the p6pol-protease cleavage site, which serves to finalize PR processing and increase enzymatic activity with the newly formed PR-reverse transcriptase intermediate, and (2) the intermolecular cleavage of the C-terminus at the protease-reverse transcriptase cleavage site, leading to the assembly of two PR subunits into mature dimers. [12] [13] Dimerization of the two subunits allows for fully functional, combined active site, characterized by two Asp25 catalytic residues (one from each monomer), to form. [14]

The HIV-1 protease dimer (green and cyan) with active site Asp-25 in red.
HIV protease 1KJF.png
Complexed with a polypeptide substrate (magenta). ( PDB: 1KJF )
HIV protease 1EBY.png
Complexed with inhibitor BEA369 (depicted as a sticks with carbon in white, nitrogen in blue, oxygen in red). ( PDB: 1EBY )

Function

HIV-1 PR serves a dual purpose. Precursor HIV-1 PR is responsible for catalyzing its own production into mature PR enzymes via PR auto-processing. [15] Mature protease is able to hydrolyze peptide bonds on the Gag-Pol polyproteins at nine specific sites, processing the resulting subunits into mature, fully functional proteins. These cleaved proteins, including reverse transcriptase, integrase, and RNaseH, are encoded by the coding region components necessary for viral replication. [4]

Mechanism

As an aspartic protease, the dimerized HIV-1 PR functions through the aspartyl group complex, in order to perform hydrolysis. Of the two Asp25 residues on the combined catalytic active site of HIV-1 PR, one is deprotonated while the other is protonated, due to pKa differences from the micro-environment. [16]

In a general aspartic protease mechanism, once the substrate is properly bound to the active site of the enzyme, the deprotonated Asp25 catalytic amino acid undergoes base catalysis, rendering the incoming water molecule a better nucleophile by deprotonating it. The resulting hydroxyl ion attacks the carbonyl carbon of the peptide bond, forming an intermediate with a transient oxyanion, which is stabilized by the initially protonated Asp25. The oxyanion re-forms a double bond, leading to the cleavage of the peptide bond between the two amino acids, while the initially deprotonated Asp25 undergoes acid catalysis to donate its proton to the amino group, making the amino group a better leaving group for complete peptide bond cleavage and returning to its original deprotonated state. [2] [17]

While HIV-1 PR shares many of the same characteristics as a non-viral aspartic protease, some evidence has shown that HIV-1 PR catalyzes hydrolysis in a concerted manner; in other words, the nucleophilic water molecule and the protonated Asp25 simultaneously attack the scissile peptide bond during catalysis. [17] [18]

The catalytic mechanism of a general aspartyl protease, containing the two characteristic Asp25 residues in the deprotonated and protonated forms. "Aspartyl proteae mechanism.png" Aspartyl protease mechanism.png
The catalytic mechanism of a general aspartyl protease, containing the two characteristic Asp25 residues in the deprotonated and protonated forms. "Aspartyl proteae mechanism.png"

As a drug target

HIV-1 Protease has the classic AspThrGly of Aspartyl Proteases. These amino acids are located at position 25, 26, and 27, and are responsible for the catalytic activity. HIV-1 Protease with Active Site.png
HIV-1 Protease has the classic AspThrGly of Aspartyl Proteases. These amino acids are located at position 25, 26, and 27, and are responsible for the catalytic activity.

With its integral role in HIV replication, HIV protease has been a prime target for drug therapy. HIV protease inhibitors work by specifically binding to the active site by mimicking the tetrahedral intermediate of its substrate and essentially becoming “stuck,” disabling the enzyme. After assembly and budding, viral particles lacking active protease cannot mature into infectious virions. Several protease inhibitors have been licensed for HIV therapy. [19]

There are ten HIV-1 PR inhibitors that are currently approved by the Food and Drug Administration: indinavir, saquinavir, ritonavir, nelfinavir, lopinavir, amprenavir, fosamprenevir, atazanavir, tipranavir, and darunavir. Many of the inhibitors have different molecular components and thus different mechanistic actions, such as blocking the active site. Their functional roles also extend to influencing circulation concentrations of other inhibitor drugs (ritonavir) and being used only for certain circumstances in which the virus exhibits tolerance of other inhibitors (tipranavir). [4] [20]

Evolution and resistance

Due to the high mutation rates of retroviruses, especially due to mutationally sensitive regions (notably the region containing the catalytic triad sequence), and considering that changes to a few amino acids within HIV protease can render it much less visible to an inhibitor, the active site of this enzyme can change rapidly when under the selective pressure of replication-inhibiting drugs. [21] [22]

Two types of mutations are generally associated with increasing drug resistance: "major" mutations and "secondary" mutations. Major mutations involve a mutation on the active site of HIV-1 PR, preventing the selective inhibitors from binding it. Secondary mutations refer to molecular changes on the periphery of the enzyme due to prolonged exposure of similar chemicals, potentially affecting inhibitor specificity for HIV-1 PR. [3]

One approach to minimizing the development of drug-resistance in HIV is to administer a combination of drugs which inhibit several key aspects of the HIV replication cycle simultaneously, rather than one drug at a time. Other drug therapy targets include reverse transcriptase, virus attachment, membrane fusion, cDNA integration and virion assembly. [23] [24]

See also

Related Research Articles

<span class="mw-page-title-main">Retrovirus</span> Family of viruses

A retrovirus is a type of virus that inserts a DNA copy of its RNA genome into the DNA of a host cell that it invades, thus changing the genome of that cell. After invading a host cell's cytoplasm, the virus uses its own reverse transcriptase enzyme to produce DNA from its RNA genome, the reverse of the usual pattern, thus retro (backwards). The new DNA is then incorporated into the host cell genome by an integrase enzyme, at which point the retroviral DNA is referred to as a provirus. The host cell then treats the viral DNA as part of its own genome, transcribing and translating the viral genes along with the cell's own genes, producing the proteins required to assemble new copies of the virus. Many retroviruses cause serious diseases in humans, other mammals, and birds.

<span class="mw-page-title-main">Integrase</span> Class of enzymes

Retroviral integrase (IN) is an enzyme produced by a retrovirus that integrates its genetic information into that of the host cell it infects. Retroviral INs are not to be confused with phage integrases (recombinases) used in biotechnology, such as λ phage integrase, as discussed in site-specific recombination.

<span class="mw-page-title-main">Protease</span> Enzyme that cleaves other proteins into smaller peptides

A protease is an enzyme that catalyzes proteolysis, breaking down proteins into smaller polypeptides or single amino acids, and spurring the formation of new protein products. They do this by cleaving the peptide bonds within proteins by hydrolysis, a reaction where water breaks bonds. Proteases are involved in numerous biological pathways, including digestion of ingested proteins, protein catabolism, and cell signaling.

<span class="mw-page-title-main">Serine protease</span> Class of enzymes

Serine proteases are enzymes that cleave peptide bonds in proteins. Serine serves as the nucleophilic amino acid at the (enzyme's) active site. They are found ubiquitously in both eukaryotes and prokaryotes. Serine proteases fall into two broad categories based on their structure: chymotrypsin-like (trypsin-like) or subtilisin-like.

Reverse-transcriptase inhibitors (RTIs) are a class of antiretroviral drugs used to treat HIV infection or AIDS, and in some cases hepatitis B. RTIs inhibit activity of reverse transcriptase, a viral DNA polymerase that is required for replication of HIV and other retroviruses.

The genome and proteins of HIV (human immunodeficiency virus) have been the subject of extensive research since the discovery of the virus in 1983. "In the search for the causative agent, it was initially believed that the virus was a form of the Human T-cell leukemia virus (HTLV), which was known at the time to affect the human immune system and cause certain leukemias. However, researchers at the Pasteur Institute in Paris isolated a previously unknown and genetically distinct retrovirus in patients with AIDS which was later named HIV." Each virion comprises a viral envelope and associated matrix enclosing a capsid, which itself encloses two copies of the single-stranded RNA genome and several enzymes. The discovery of the virus itself occurred two years following the report of the first major cases of AIDS-associated illnesses.

The murine leukemia viruses are retroviruses named for their ability to cause cancer in murine (mouse) hosts. Some MLVs may infect other vertebrates. MLVs include both exogenous and endogenous viruses. Replicating MLVs have a positive sense, single-stranded RNA (ssRNA) genome that replicates through a DNA intermediate via the process of reverse transcription.

Simian foamy virus (SFV) is a species of the genus Spumavirus that belongs to the family of Retroviridae. It has been identified in a wide variety of primates, including prosimians, New World and Old World monkeys, as well as apes, and each species has been shown to harbor a unique (species-specific) strain of SFV, including African green monkeys, baboons, macaques, and chimpanzees. As it is related to the more well-known retrovirus human immunodeficiency virus (HIV), its discovery in primates has led to some speculation that HIV may have been spread to the human species in Africa through contact with blood from apes, monkeys, and other primates, most likely through bushmeat-hunting practices.

Group-specific antigen, or gag, is the polyprotein that contains the core structural proteins of an Ortervirus. It was named as such because scientists used to believe it was antigenic. Now it is known that it makes up the inner shell, not the envelope exposed outside. It makes up all the structural units of viral conformation and provides supportive framework for mature virion.

Env is a viral gene that encodes the protein forming the viral envelope. The expression of the env gene enables retroviruses to target and attach to specific cell types, and to infiltrate the target cell membrane.

<span class="mw-page-title-main">TEV protease</span> Highly specific protease

TEV protease is a highly sequence-specific cysteine protease from Tobacco Etch Virus (TEV). It is a member of the PA clan of chymotrypsin-like proteases. Due to its high sequence specificity, TEV protease is frequently used for the controlled cleavage of fusion proteins in vitro and in vivo.

<span class="mw-page-title-main">Resistance mutation (virology)</span> Virus mutation

A resistance mutation is a mutation in a virus gene that allows the virus to become resistant to treatment with a particular antiviral drug. The term was first used in the management of HIV, the first virus in which genome sequencing was routinely used to look for drug resistance. At the time of infection, a virus will infect and begin to replicate within a preliminary cell. As subsequent cells are infected, random mutations will occur in the viral genome. When these mutations begin to accumulate, antiviral methods will kill the wild type strain, but will not be able to kill one or many mutated forms of the original virus. At this point a resistance mutation has occurred because the new strain of virus is now resistant to the antiviral treatment that would have killed the original virus. Resistance mutations are evident and widely studied in HIV due to its high rate of mutation and prevalence in the general population. Resistance mutation is now studied in bacteriology and parasitology.

<span class="mw-page-title-main">HIV ribosomal frameshift signal</span>

HIV ribosomal frameshift signal is a ribosomal frameshift (PRF) that human immunodeficiency virus (HIV) uses to translate several different proteins from the same sequence.

<span class="mw-page-title-main">Bevirimat</span> Chemical compound

Bevirimat is an anti-HIV drug derived from a betulinic acid-like compound, first isolated from Syzygium claviflorum, a Chinese herb. It is believed to inhibit HIV by a novel mechanism, so-called maturation inhibition. It is not currently U.S. Food and Drug Administration (FDA) approved. It was originally developed by the pharmaceutical company Panacos and reached Phase IIb clinical trials. Myriad Genetics announced on January 21, 2009 the acquisition of all rights to bevirimat for $7M USD. On June 8, 2010 Myriad Genetics announced that it was halting the development of maturation inhibitors, including bevirimat, to focus more on their oncology portfolio.

NS2-3 protease is an enzyme responsible for proteolytic cleavage between NS2 and NS3, which are non-structural proteins that form part of the HCV virus particle. NS3 protease of hepatitis C virus, on the other hand, is responsible for the cleavage of non-structural protein downstream. Both of these proteases are directly involved in HCV genome replication, that is, during the viral life-cycle that leads to virus multiplication in the host that has been infected by the virus.

Many major physiological processes depend on regulation of proteolytic enzyme activity and there can be dramatic consequences when equilibrium between an enzyme and its substrates is disturbed. In this prospective, the discovery of small-molecule ligands, like protease inhibitors, that can modulate catalytic activities has an enormous therapeutic effect. Hence, inhibition of the HIV protease is one of the most important approaches for the therapeutic intervention in HIV infection and their development is regarded as major success of structure-based drug design. They are highly effective against HIV and have, since the 1990s, been a key component of anti-retroviral therapies for HIV/AIDS.

Bovine immunodeficiency virus (BIV) is a retrovirus belonging to the genus Lentivirus. It is similar to the human immunodeficiency virus (HIV) and infects cattle. The cells primarily infected are lymphocytes and monocytes/macrophages.

<span class="mw-page-title-main">Retroviral aspartyl protease</span>

Retroviral aspartyl proteases or retropepsins are single domain aspartyl proteases from retroviruses, retrotransposons, and badnaviruses. These proteases are generally part of a larger pol or gag polyprotein. Retroviral proteases are homologous to a single domain of the two-domain eukaryotic aspartyl proteases such as pepsins, cathepsins, and renins. Retropepsins are members of MEROPS A2, clan AA. All known members are endopeptidases.

The first human immunodeficiency virus (HIV) case was reported in the United States in the early 1980s. Many drugs have been discovered to treat the disease but mutations in the virus and resistance to the drugs make development difficult. Integrase is a viral enzyme that integrates retroviral DNA into the host cell genome. Integrase inhibitors are a new class of drugs used in the treatment of HIV. The first integrase inhibitor, raltegravir, was approved in 2007 and other drugs were in clinical trials in 2011.

Mason-Pfizer monkey virus (M-PMV), formerly Simian retrovirus (SRV), is a species of retroviruses that usually infect and cause a fatal immune deficiency in Asian macaques. The ssRNA virus appears sporadically in mammary carcinoma of captive macaques at breeding facilities which expected as the natural host, but the prevalence of this virus in feral macaques remains unknown. M-PMV was transmitted naturally by virus-containing body fluids, via biting, scratching, grooming, and fighting. Cross contaminated instruments or equipment (fomite) can also spread this virus among animals.

References

  1. 1 2 Davies DR (1990). "The structure and function of the aspartic proteinases". Annual Review of Biophysics and Biophysical Chemistry. 19 (1): 189–215. doi:10.1146/annurev.bb.19.060190.001201. PMID   2194475.
  2. 1 2 3 Brik A, Wong CH (January 2003). "HIV-1 protease: mechanism and drug discovery". Organic & Biomolecular Chemistry. 1 (1): 5–14. doi:10.1039/b208248a. PMID   12929379.
  3. 1 2 Huang X, Britto MD, Kear-Scott JL, Boone CD, Rocca JR, Simmerling C, Mckenna R, Bieri M, Gooley PR, Dunn BM, Fanucci GE (June 2014). "The role of select subtype polymorphisms on HIV-1 protease conformational sampling and dynamics". The Journal of Biological Chemistry. 289 (24): 17203–14. doi: 10.1074/jbc.M114.571836 . PMC   4059161 . PMID   24742668.
  4. 1 2 3 Lv Z, Chu Y, Wang Y (April 2015). "HIV protease inhibitors: a review of molecular selectivity and toxicity". HIV/AIDS: Research and Palliative Care. 7: 95–104. doi: 10.2147/hiv.s79956 . PMC   4396582 . PMID   25897264.
  5. Kräusslich HG, Ingraham RH, Skoog MT, Wimmer E, Pallai PV, Carter CA (February 1989). "Activity of purified biosynthetic proteinase of human immunodeficiency virus on natural substrates and synthetic peptides". Proceedings of the National Academy of Sciences of the United States of America. 86 (3): 807–11. Bibcode:1989PNAS...86..807K. doi: 10.1073/pnas.86.3.807 . PMC   286566 . PMID   2644644.
  6. Kohl NE, Emini EA, Schleif WA, Davis LJ, Heimbach JC, Dixon RA, Scolnick EM, Sigal IS (July 1988). "Active human immunodeficiency virus protease is required for viral infectivity". Proceedings of the National Academy of Sciences of the United States of America. 85 (13): 4686–90. Bibcode:1988PNAS...85.4686K. doi: 10.1073/pnas.85.13.4686 . PMC   280500 . PMID   3290901.
  7. Perryman AL, Lin JH, McCammon JA (April 2004). "HIV-1 protease molecular dynamics of a wild-type and of the V82F/I84V mutant: possible contributions to drug resistance and a potential new target site for drugs" (PDF). Protein Science. 13 (4): 1108–23. doi:10.1110/ps.03468904. PMC   2280056 . PMID   15044738. Archived from the original (PDF) on 2008-12-16.
  8. Chatterjee A, Mridula P, Mishra RK, Mittal R, Hosur RV (March 2005). "Folding regulates autoprocessing of HIV-1 protease precursor". The Journal of Biological Chemistry. 280 (12): 11369–78. doi: 10.1074/jbc.M412603200 . PMID   15632156.
  9. 1 2 3 4 Pettit SC, Everitt LE, Choudhury S, Dunn BM, Kaplan AH (August 2004). "Initial cleavage of the human immunodeficiency virus type 1 GagPol precursor by its activated protease occurs by an intramolecular mechanism". Journal of Virology. 78 (16): 8477–85. doi:10.1128/JVI.78.16.8477-8485.2004. PMC   479095 . PMID   15280456.
  10. Miller M, Schneider J, Sathyanarayana BK, Toth MV, Marshall GR, Clawson L, Selk L, Kent SB, Wlodawer A (December 1989). "Structure of complex of synthetic HIV-1 protease with a substrate-based inhibitor at 2.3 A resolution". Science. 246 (4934): 1149–52. doi:10.1126/science.2686029. PMID   2686029.
  11. Louis JM, Clore GM, Gronenborn AM (September 1999). "Autoprocessing of HIV-1 protease is tightly coupled to protein folding". Nature Structural Biology. 6 (9): 868–75. doi:10.1038/12327. PMID   10467100. S2CID   6375519.
  12. Louis JM, Nashed NT, Parris KD, Kimmel AR, Jerina DM (August 1994). "Kinetics and mechanism of autoprocessing of human immunodeficiency virus type 1 protease from an analog of the Gag-Pol polyprotein". Proceedings of the National Academy of Sciences of the United States of America. 91 (17): 7970–4. Bibcode:1994PNAS...91.7970L. doi: 10.1073/pnas.91.17.7970 . PMC   44526 . PMID   8058744.
  13. Wondrak EM, Nashed NT, Haber MT, Jerina DM, Louis JM (February 1996). "A transient precursor of the HIV-1 protease. Isolation, characterization, and kinetics of maturation". The Journal of Biological Chemistry. 271 (8): 4477–81. doi: 10.1074/jbc.271.8.4477 . PMID   8626801.
  14. Zhang S, Kaplan AH, Tropsha A (November 2008). "HIV-1 protease function and structure studies with the simplicial neighborhood analysis of protein packing method". Proteins. 73 (3): 742–53. doi:10.1002/prot.22094. PMC   2765824 . PMID   18498108.
  15. Huang L, Chen C (July 2013). "Understanding HIV-1 protease autoprocessing for novel therapeutic development". Future Medicinal Chemistry . 5 (11): 1215–29. doi:10.4155/fmc.13.89. PMC   3826259 . PMID   23859204.
  16. Smith R, Brereton IM, Chai RY, Kent SB (November 1996). "Ionization states of the catalytic residues in HIV-1 protease". Nature Structural Biology. 3 (11): 946–50. doi:10.1038/nsb1196-946. PMID   8901873. S2CID   1076528.
  17. 1 2 Liu H, Müller-Plathe F, van Gunsteren WF (August 1996). "A combined quantum/classical molecular dynamics study of the catalytic mechanism of HIV protease". Journal of Molecular Biology. 261 (3): 454–69. doi:10.1006/jmbi.1996.0476. PMID   8780786.
  18. Jaskólski M, Tomasselli AG, Sawyer TK, Staples DG, Heinrikson RL, Schneider J, Kent SB, Wlodawer A (February 1991). "Structure at 2.5-A resolution of chemically synthesized human immunodeficiency virus type 1 protease complexed with a hydroxyethylene-based inhibitor". Biochemistry. 30 (6): 1600–9. doi:10.1021/bi00220a023. PMID   1993177.
  19. Rang HP (2007). Rang and Dale's pharmacology (6th ed.). Philadelphia, Pa., U.S.A.: Churchill Livingstone/Elsevier. ISBN   9780808923541.
  20. Griffin L, Annaert P, Brouwer KL (September 2011). "Influence of drug transport proteins on the pharmacokinetics and drug interactions of HIV protease inhibitors". Journal of Pharmaceutical Sciences. 100 (9): 3636–54. doi:10.1002/jps.22655. PMC   3750718 . PMID   21698598.
  21. Watkins T, Resch W, Irlbeck D, Swanstrom R (February 2003). "Selection of high-level resistance to human immunodeficiency virus type 1 protease inhibitors". Antimicrobial Agents and Chemotherapy. 47 (2): 759–69. doi:10.1128/AAC.47.2.759-769.2003. PMC   151730 . PMID   12543689.
  22. Loeb DD, Swanstrom R, Everitt L, Manchester M, Stamper SE, Hutchison CA (August 1989). "Complete mutagenesis of the HIV-1 protease". Nature. 340 (6232): 397–400. Bibcode:1989Natur.340..397L. doi:10.1038/340397a0. PMID   2666861. S2CID   4351388.
  23. Moore JP, Stevenson M (October 2000). "New targets for inhibitors of HIV-1 replication". Nature Reviews. Molecular Cell Biology. 1 (1): 40–9. doi:10.1038/35036060. PMID   11413488. S2CID   10811618.
  24. De Clercq E (December 2007). "The design of drugs for HIV and HCV". Nature Reviews. Drug Discovery. 6 (12): 1001–18. doi:10.1038/nrd2424. PMID   18049474. S2CID   37859193.