Viral infectivity factor | |||||||||
---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||
Symbol | Vif | ||||||||
Pfam | PF00559 | ||||||||
InterPro | IPR000475 | ||||||||
|
Viral infectivity factor, or Vif, is an accessory protein found in HIV and other lentiviruses. Its role is to disrupt the antiviral activity of the human enzyme APOBEC (specifically APOBEC3G, "A3G" in short, and other A3 enzymes) by targeting it for ubiquitination and cellular degradation. APOBEC is a cytidine deaminase enzyme that mutates viral nucleic acids.
Despite the functional and (weak) structural similarities, Vif found in lentiviruses can function in quite different ways. For example, the HIV-1 Vif ("Vif1" hereafter) and HIV-2 Vif ("Vif2") attach to APOBEC from different ends of themselves and have a different spectrum of inhibition. As HIV-1 is older and more virulent, many more studies have been done on the Vif1 than on the Vif2. Similarly, more studies have been done on the HIV/SIV Vif than on any other lentiviral Vif. [2]
Vif1 is a 23-kilodalton protein that is essential for viral replication. Vif1 inhibits the cellular protein APOBEC3G from entering the virion during budding from a host cell by targeting it for proteasomal degradation. Vif1 binds to A3G as well as the cellular Cullin5 E3 Ubiquitin Ligase (ELOB-ELOC-CUL5) and a CBFB cofactor so that the ligase can be hijacked to tag A3G for degradation. [3] The crystal Structure of the HIV-1 Vif BC-box in Complex with Human Elongin B and Elongin C was solved in 2008, [1] and the structure of the full Vif1/E3 complex was solved in 2014. [4]
In the absence of Vif, APOBEC3G causes hypermutation of the viral genome, rendering it dead-on-arrival at the next host cell. APOBEC3G is thus a host defence to retroviral infection which HIV-1 has overcome by the acquisition of Vif. [5] Vif1 is additionally able to inhibit human A3C, A3D, A3F, and A3H haplotype II, [6] all of which can similarly be packaged and cause hypermutation in Vif-deficient HIV-1. Different surfaces on Vif1 are used to bind A3C, A3F, and A3G. [7]
Vif may still be able to inhibit A3 in ways independent of degradation. Vif1 seems to reduce the amount of A3 proteins (including A3D/G/F) packaged in the virion, and to slow down the action of any A3G that does make it in. [8]
Vif1 was considered as a phosphoprotein and phosphorylation seemed to be required for viral infectivity. [9] [10] [11] But recent studies with the use of metabolic labelling demonstrated that serine/threonine phosphorylation of Vif1 and A3G is not required for the interaction of Vif1 with A3G for Vif dependent degradation of A3G and the antiviral activity of A3G. [12] However, a recent study by Raja et al has shown that Host AKT-Mediated phosphorylation of HIV-1 Vif at Thr20 stabilizes it to enhance APOBEC3G degradation and potentiate HIV-1 infectivity. [11]
Vif2 is only about ~30% identical at the amino acid level to Vif1, a result of the evolutionary separation in different source species of the two viruses (see Subtypes of HIV). In 2014, it was discovered that Vif2 attaches to A3G and A3F using very different residues compared to Vif1, and that it, unlike Vif1, cannot inhibit A3D at all. [2] In 2016, it was found that Vif2 also attaches to A3C differently. [7] In 2021, it was found that Vif2 inhibits A3B (which HIV-1 does not) and that A3B is able to inhibit a Vif-less HIV-2 (but not a Vif-less HIV-1). As A3B is also implicated in hypermutation in cancer, this discovery could lead to a way to slow down cancer cells. [13]
As of January 2023 [update] , no structure of Vif2 can be found in the Protein Data Bank. However, it is known from the related Vifmac (SIVmac Vif) that it probably binds A3B in the same orientation as Vif1 does for A3G. [14]
Ever since the 2000s, there has been interest in developing drugs that disarm the virus by inhibiting Vif. [5] An 2018 review lists 17 small molecules capable of stopping viral replication by Vif inhibition, and categorized them into the functional categories of Vif multimerization targeting, A3G-Vif-targeting (two subcategories by the binding interface disrupted), Vif-EloC targeting, and A3G-upregulating. Two of the drugs were further checked for resistance potential. It turns out that the virus can become resistant in laboratory conditions after exposure to increasing amounts of either drug. [15]
In July 2021, the Chinese National Medical Products Administration granted conditional approval to azvudine, which claims to be a dual nucleoside reverse transcriptase inhibitor and HIV-1 Vif inhibitor. [16]
Vif has been found in other Lentiviruses, including the Simian immunodeficiency virus (SIV), Feline immunodeficiency virus (FIV; Pfam PF05851), Visna virus (MVV) and Caprine arthritis encephalitis virus (Pfam PF07401). [17] [18] The mamallian APOBEC3 enzymes are in an arms race with Vifs found in those viruses, actively evolving and diversifying to escape inactivation. Most Vifs use CBFB with CRL complex (CUL2/5-RBX2-ELOB/C) as the cofactor/adapter, but Visna-maedi virus (MVV) uses CYPA instead of CBFB. Bovine immunodeficiency virus Vif unusually requires none of such adapters. [19] [20] [21]
Simian immunodeficiency virus (SIV) is a species of retrovirus that cause persistent infections in at least 45 species of non-human primates. Based on analysis of strains found in four species of monkeys from Bioko Island, which was isolated from the mainland by rising sea levels about 11,000 years ago, it has been concluded that SIV has been present in monkeys and apes for at least 32,000 years, and probably much longer.
Tripartite motif-containing protein 5 also known as RING finger protein 88 is a protein that in humans is encoded by the TRIM5 gene. The alpha isoform of this protein, TRIM5α, is a retrovirus restriction factor, which mediates a species-specific early block to retrovirus infection.
A viroplasm, sometimes called "virus factory" or "virus inclusion", is an inclusion body in a cell where viral replication and assembly occurs. They may be thought of as viral factories in the cell. There are many viroplasms in one infected cell, where they appear dense to electron microscopy. Very little is understood about the mechanism of viroplasm formation.
APOBEC3G is a human enzyme encoded by the APOBEC3G gene that belongs to the APOBEC superfamily of proteins. This family of proteins has been suggested to play an important role in innate anti-viral immunity. APOBEC3G belongs to the family of cytidine deaminases that catalyze the deamination of cytidine to uridine in the single stranded DNA substrate. The C-terminal domain of A3G renders catalytic activity, several NMR and crystal structures explain the substrate specificity and catalytic activity.
NSP1 (NS53), the product of rotavirus gene 5, is a nonstructural RNA-binding protein that contains a cysteine-rich region and is a component of early replication intermediates. RNA-folding predictions suggest that this region of the NSP1 mRNA can interact with itself, producing a stem-loop structure similar to that found near the 5'-terminus of the NSP1 mRNA.
Importin subunit alpha-4 also known as karyopherin subunit alpha-3 is a protein that in humans is encoded by the KPNA3 gene.
Importin subunit alpha-7 is a protein that in humans is encoded by the KPNA6 gene.
Importin subunit alpha-3, also known as karyopherin subunit alpha-4, is a protein that in humans is encoded by the KPNA4 gene.
COP9 signalosome complex subunit 6 is a protein that in humans is encoded by the COPS6 gene.
Proteasome activator complex subunit 4 is a protein that in humans is encoded by the PSME4 gene.
DNA dC->dU-editing enzyme APOBEC-3F is a protein that in humans is encoded by the APOBEC3F gene.
DNA dC->dU-editing enzyme APOBEC-3C is a protein that in humans is encoded by the APOBEC3C gene.
Intrinsic immunity refers to a set of cellular-based anti-viral defense mechanisms, notably genetically encoded proteins which specifically target eukaryotic retroviruses. Unlike adaptive and innate immunity effectors, intrinsic immune proteins are usually expressed at a constant level, allowing a viral infection to be halted quickly. Intrinsic antiviral immunity refers to a form of innate immunity that directly restricts viral replication and assembly, thereby rendering a cell non-permissive to a specific class or species of viruses. Intrinsic immunity is conferred by restriction factors preexisting in certain cell types, although these factors can be further induced by virus infection. Intrinsic viral restriction factors recognize specific viral components, but unlike other pattern recognition receptors that inhibit viral infection indirectly by inducing interferons and other antiviral molecules, intrinsic antiviral factors block viral replication immediately and directly.
Vpu is an accessory protein that in HIV is encoded by the vpu gene. Vpu stands for "Viral Protein U". The Vpu protein acts in the degradation of CD4 in the endoplasmic reticulum and in the enhancement of virion release from the plasma membrane of infected cells. Vpu induces the degradation of the CD4 viral receptor and therefore participates in the general downregulation of CD4 expression during the course of HIV infection. Vpu-mediated CD4 degradation is thought to prevent CD4-Env binding in the endoplasmic reticulum to facilitate proper Env assembly into virions. It is found in the membranes of infected cells, but not the virus particles themselves.
Vpr is a Human immunodeficiency virus gene and protein product. Vpr stands for "Viral Protein R". Vpr, a 96 amino acid 14-kDa protein, plays an important role in regulating nuclear import of the HIV-1 pre-integration complex, and is required for virus replication and enhanced gene expression from provirus in dividing or non-dividing cells such as T cells or macrophages. Vpr also induces G2 cell cycle arrest and apoptosis in proliferating cells, which can result in immune dysfunction.
2F5 is a broadly neutralizing human monoclonal antibody (mAb) that has been shown to bind to and neutralize HIV-1 in vitro, making it a potential candidate for use in vaccine synthesis. 2F5 recognizes an epitope in the membrane-proximal external region (MPER) of HIV-1 gp41. 2F5 then binds to this epitope and its constant region interacts with the viral lipid membrane, which neutralizes the virus.
DNA dC->dU-editing enzyme APOBEC-3H, also known as Apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3H or APOBEC-related protein 10, is a protein that in humans is encoded by the APOBEC3H gene.
Vpx is a virion-associated protein encoded by human immunodeficiency virus type 2 HIV-2 and most simian immunodeficiency virus (SIV) strains, but that is absent from HIV-1. It is similar in structure to the protein Vpr that is carried by SIV and HIV-2 as well as HIV-1. Vpx is one of five accessory proteins carried by lentiviruses that enhances viral replication by inhibiting host antiviral factors.
Viral synapse is a molecularly organized cellular junction that is similar in some aspects to immunological synapses. Many viruses including herpes simplex virus (HSV), human immunodeficiency virus (HIV) and human T-lymphotropic virus (HTLV) have been shown to instigate the formation of these junctions between the infected ("donor") and uninfected ("target") cell to allow cell-to-cell transmission. As viral synapses allow the virus to spread directly from cell to cell, they also provide a means by which the virus can escape neutralising antibody.
Paul Darren Bieniasz is a British-American virologist whose main area of research is HIV/AIDS. He is currently a professor of retrovirology at the Rockefeller University. He received the 2015 KT Jeang Retrovirology Prize and the 2010 Eli Lilly and Company Research Award. Bieniasz has been a Howard Hughes Medical Institute investigator since 2008.