P24 capsid protein

Last updated
The HIV capsid consists of roughly 2000 copies of the p24 protein. The p24 structure is shown in two representations: cartoon (top) and isosurface (bottom) P24 HIV-capsid.png
The HIV capsid consists of roughly 2000 copies of the p24 protein. The p24 structure is shown in two representations: cartoon (top) and isosurface (bottom)

The p24 capsid protein is the most abundant HIV protein with each virus containing approximately 1,500 to 3,000 p24 molecules. [1] It is the major structural protein within the capsid, and it is involved in maintaining the structural integrity of the virus and facilitating various stages of the viral life cycle, including viral entry into host cells and the release of new virus particles. [2] Detection of p24 protein's antigen can be used to identify the presence of HIV in a person's blood and diagnose HIV/AIDS, however, more modern tests have taken their place. [3] After approximately 50 days of infection, the p24 antigen is often cleared from the bloodstream entirely. [4]

Contents

Structure

Structure-of-HIV-1-capsid-A-The-structure-of-the-CA-monomer-showing-the-N and C-terminal domain Structure-of-HIV-1-capsid-A-The-structure-of-the-CA-monomer-showing-the-N-terminal (1).png
Structure-of-HIV-1-capsid-A-The-structure-of-the-CA-monomer-showing-the-N and C-terminal domain

P24 has a molecular weight of 24 kDa and is encoded by the gag gene. The structure of HIV capsid was determined by X-ray crystallography and cryo-electron microscopy. [5] The p24 capsid protein consists of two domains: the N-terminal domain and the C-terminal domain connected by flexible inter-domain linkers. The N-terminal domain (NTD) is made up of 7 α-helices (H) and β-hairpin. [6] [7] The C-terminal domain (CTD) has 4 α-helices and an 11-residue unstructured region. [8] [9] The N-terminal domain (NTD) facilitates contacts within the hexamer, while the C-terminal domain (CTD) forms dimers that bind to adjacent hexamers. [10] Each hexamer contains a size-selective pore surrounded by six positively charged arginine residues, and the pore is covered by a β-hairpin that can undergo conformational changes, which has both open and closed conformations. [11] At the center of the hexamers lies an IP6 molecule which stabilizes the tertiary structure of the molecule. Additionally, the C-terminal domain includes a major homology region (MHR) spanning amino acids 153 to 172 with 20 highly conserved amino acids. [11] Moreover, the N-terminal domain features a loop (amino acids 85–93) that interacts with the protein cyclophilin A (Cyp A).

Function

P24 is a structural protein that plays a crucial role in the formation and stability of the viral capsid, which protects the viral RNA. p24 capsid protein's roles in the HIV replicative process are summarized as follows:[ citation needed ]

p24 HIV capsid as a therapeutic target

New antiretroviral therapy

Cyclosporine, an immunosuppressant drug designed to prevent organ transplant rejection, has been shown to inhibit infection in HIV-1 positive people. [12] Cyclosporine acts as a competitive inhibitor to the capsid protein’s association with CypA, a cellular protein. CypA has been shown to be important for HIV’s infectivity.

The HIV-1 p24 capsid protein plays crucial roles throughout the replication cycle, making it an attractive therapeutic target. Unlike the viral enzymes (protease, reverse transcriptase and integrase) that are currently targeted by small-molecule antiretroviral drugs, p24 capsid proteins operate through protein-protein interactions. Capsid inhibitors, such as Lenacapavir and GS-6207, interfere with the activities of the HIV capsid protein and underwent evaluation in phase-1 clinical trials as monotherapies. [13] [14] They demonstrated anti-viral activity against all subtypes with no cross-resistance with current antiretroviral drugs. [13] [14] These findings support therapies aimed at disrupting the functions of the HIV capsid protein.

Vaccine design

P24 can induce cellular immune responses and has been included in some vaccine strategies. [3]

Diagnosis

Fourth generation-HIV test

P24 is a target for the immune system, and antibodies against p24 are used in diagnostic tests to detect the presence of HIV antibodies. Fourth-generation HIV immunoassays detect viral p24 protein in the blood and patient antibodies against the virus. Previous generation tests relied on detecting patient antibodies alone; it takes about 3–4 weeks for the earliest antibodies to be detected. The p24 protein can be detected in a patient's blood as early as 2 weeks after infection, further reducing the window period necessary to accurately detect the HIV status of the patient. [15]

See also

Related Research Articles

<span class="mw-page-title-main">Capsid</span> Protein shell of a virus

A capsid is the protein shell of a virus, enclosing its genetic material. It consists of several oligomeric (repeating) structural subunits made of protein called protomers. The observable 3-dimensional morphological subunits, which may or may not correspond to individual proteins, are called capsomeres. The proteins making up the capsid are called capsid proteins or viral coat proteins (VCP). The virus genomic component inside the capsid, along with occasionally present virus core protein, is called the virus core. The capsid and core together are referred to as a nucleocapsid.

<span class="mw-page-title-main">HIV</span> Human retrovirus, cause of AIDS

The human immunodeficiency viruses (HIV) are two species of Lentivirus that infect humans. Over time, they cause acquired immunodeficiency syndrome (AIDS), a condition in which progressive failure of the immune system allows life-threatening opportunistic infections and cancers to thrive. Without treatment, the average survival time after infection with HIV is estimated to be 9 to 11 years, depending on the HIV subtype.

<span class="mw-page-title-main">Integrase</span> Class of enzymes

Retroviral integrase (IN) is an enzyme produced by a retrovirus that integrates its genetic information into that of the host cell it infects. Retroviral INs are not to be confused with phage integrases (recombinases) used in biotechnology, such as λ phage integrase, as discussed in site-specific recombination.

<span class="mw-page-title-main">TRIM5alpha</span>

Tripartite motif-containing protein 5 also known as RING finger protein 88 is a protein that in humans is encoded by the TRIM5 gene. The alpha isoform of this protein, TRIM5α, is a retrovirus restriction factor, which mediates a species-specific early block to retrovirus infection.

<span class="mw-page-title-main">Zinc finger inhibitor</span>

Zinc finger inhibitors, or zinc ejectors, are substances or compounds that interact adversely with zinc fingers and cause them to release their zinc from its binding site, disrupting the conformation of the polypeptide chain and rendering the zinc fingers ineffective, thereby preventing them from performing their associated cellular functions. This is typically accomplished through chelation of the zinc binding site. As zinc fingers are known to be involved in m-RNA regulation, reverse transcription, protection of synthesized viral DNA, transcription inhibition, and initial integration processes, prevention of zinc finger function can have drastic effects on the function of the cell or virus.

<span class="mw-page-title-main">CD4</span> Marker on immune cells

In molecular biology, CD4 is a glycoprotein that serves as a co-receptor for the T-cell receptor (TCR). CD4 is found on the surface of immune cells such as helper T cells, monocytes, macrophages, and dendritic cells. It was discovered in the late 1970s and was originally known as leu-3 and T4 before being named CD4 in 1984. In humans, the CD4 protein is encoded by the CD4 gene.

The genome and proteins of HIV (human immunodeficiency virus) have been the subject of extensive research since the discovery of the virus in 1983. "In the search for the causative agent, it was initially believed that the virus was a form of the Human T-cell leukemia virus (HTLV), which was known at the time to affect the human immune system and cause certain leukemias. However, researchers at the Pasteur Institute in Paris isolated a previously unknown and genetically distinct retrovirus in patients with AIDS which was later named HIV." Each virion comprises a viral envelope and associated matrix enclosing a capsid, which itself encloses two copies of the single-stranded RNA genome and several enzymes. The discovery of the virus itself occurred two years following the report of the first major cases of AIDS-associated illnesses.

<span class="mw-page-title-main">Envelope glycoprotein GP120</span> Glycoprotein exposed on the surface of the HIV virus

Envelope glycoprotein GP120 is a glycoprotein exposed on the surface of the HIV envelope. It was discovered by Professors Tun-Hou Lee and Myron "Max" Essex of the Harvard School of Public Health in 1984. The 120 in its name comes from its molecular weight of 120 kDa. Gp120 is essential for virus entry into cells as it plays a vital role in attachment to specific cell surface receptors. These receptors are DC-SIGN, Heparan Sulfate Proteoglycan and a specific interaction with the CD4 receptor, particularly on helper T-cells. Binding to CD4 induces the start of a cascade of conformational changes in gp120 and gp41 that lead to the fusion of the viral membrane with the host cell membrane. Binding to CD4 is mainly electrostatic although there are van der Waals interactions and hydrogen bonds.

<span class="mw-page-title-main">Gp41</span> Subunit of the envelope protein complex of retroviruses

Gp41 also known as glycoprotein 41 is a subunit of the envelope protein complex of retroviruses, including human immunodeficiency virus (HIV). Gp41 is a transmembrane protein that contains several sites within its ectodomain that are required for infection of host cells. As a result of its importance in host cell infection, it has also received much attention as a potential target for HIV vaccines.

<span class="mw-page-title-main">Herpes simplex virus</span> Species of virus

Herpes simplex virus1 and 2, also known by their taxonomic names Human alphaherpesvirus 1 and Human alphaherpesvirus 2, are two members of the human Herpesviridae family, a set of viruses that produce viral infections in the majority of humans. Both HSV-1 and HSV-2 are very common and contagious. They can be spread when an infected person begins shedding the virus.

<span class="mw-page-title-main">APOBEC3G</span> Protein and coding gene in humans

APOBEC3G is a human enzyme encoded by the APOBEC3G gene that belongs to the APOBEC superfamily of proteins. This family of proteins has been suggested to play an important role in innate anti-viral immunity. APOBEC3G belongs to the family of cytidine deaminases that catalyze the deamination of cytidine to uridine in the single stranded DNA substrate. The C-terminal domain of A3G renders catalytic activity, several NMR and crystal structures explain the substrate specificity and catalytic activity.

Simian foamy virus (SFV), historically Human foamy virus (HFV), is a species of the genus Spumavirus that belongs to the family of Retroviridae. It has been identified in a wide variety of primates, including prosimians, New World and Old World monkeys, as well as apes, and each species has been shown to harbor a unique (species-specific) strain of SFV, including African green monkeys, baboons, macaques, and chimpanzees. As it is related to the more well-known retrovirus human immunodeficiency virus (HIV), its discovery in primates has led to some speculation that HIV may have been spread to the human species in Africa through contact with blood from apes, monkeys, and other primates, most likely through bushmeat-hunting practices.

Antigenic variation or antigenic alteration refers to the mechanism by which an infectious agent such as a protozoan, bacterium or virus alters the proteins or carbohydrates on its surface and thus avoids a host immune response, making it one of the mechanisms of antigenic escape. It is related to phase variation. Antigenic variation not only enables the pathogen to avoid the immune response in its current host, but also allows re-infection of previously infected hosts. Immunity to re-infection is based on recognition of the antigens carried by the pathogen, which are "remembered" by the acquired immune response. If the pathogen's dominant antigen can be altered, the pathogen can then evade the host's acquired immune system. Antigenic variation can occur by altering a variety of surface molecules including proteins and carbohydrates. Antigenic variation can result from gene conversion, site-specific DNA inversions, hypermutation, or recombination of sequence cassettes. The result is that even a clonal population of pathogens expresses a heterogeneous phenotype. Many of the proteins known to show antigenic or phase variation are related to virulence.

Group-specific antigen, or gag, is the polyprotein that contains the core structural proteins of an Ortervirus. It was named as such because scientists used to believe it was antigenic. Now it is known that it makes up the inner shell, not the envelope exposed outside. It makes up all the structural units of viral conformation and provides supportive framework for mature virion.

Env is a viral gene that encodes the protein forming the viral envelope. The expression of the env gene enables retroviruses to target and attach to specific cell types, and to infiltrate the target cell membrane.

Tat (HIV)

In molecular biology, Tat is a protein that is encoded for by the tat gene in HIV-1. Tat is a regulatory protein that drastically enhances the efficiency of viral transcription. Tat stands for "Trans-Activator of Transcription". The protein consists of between 86 and 101 amino acids depending on the subtype. Tat vastly increases the level of transcription of the HIV dsDNA. Before Tat is present, a small number of RNA transcripts will be made, which allow the Tat protein to be produced. Tat then binds to cellular factors and mediates their phosphorylation, resulting in increased transcription of all HIV genes, providing a positive feedback cycle. This in turn allows HIV to have an explosive response once a threshold amount of Tat is produced, a useful tool for defeating the body's response.

The Epstein–Barr virus nuclear antigen 2 (EBNA-2) is one of the six EBV viral nuclear proteins expressed in latently infected B lymphocytes is a transactivator protein. EBNA2 is involved in the regulation of latent viral transcription and contributes to the immortalization of EBV infected cells. EBNA2 acts as an adapter molecule that binds to cellular sequence-specific DNA-binding proteins, JK recombination signal-binding protein (RBP-JK), and PU.1 as well as working with multiple members of the RNA polymerase II transcription complex.

<span class="mw-page-title-main">Lenacapavir</span> Antiretroviral medication

Lenacapavir, sold under the brand name Sunlenca, is an antiretroviral medication used to treat HIV/AIDS. It is taken by mouth or by subcutaneous injection.

Bacteriophage AP205 is a plaque-forming bacteriophage that infects Acinetobacter bacteria. Bacteriophage AP205 is a protein-coated virus with a positive single-stranded RNA genome. It is a member of the family Fiersviridae, consisting of particles that infect Gram-negative bacteria such as E. coli.

In the management of HIV/AIDS, HIV capsid inhibitors are antiretroviral medicines that target the capsid shell of the virus. This is in contrast to most current antiretroviral drugs used to treat HIV, which do not directly target the viral capsid. These have also been termed "Capsid-targeting Antivirals", "Capsid Effectors", and "Capsid Assembly Modulators (CAMs)". Because of this, drugs that specifically inhibit the HIV capsid are being developed in order to reduce the replication of HIV, and treat infections that have become resistant to current antiretroviral therapies.

References

  1. Summers MF, Henderson LE, Chance MR, Bess JW, South TL, Blake PR, et al. (May 1992). "Nucleocapsid zinc fingers detected in retroviruses: EXAFS studies of intact viruses and the solution-state structure of the nucleocapsid protein from HIV-1". Protein Science. 1 (5): 563–574. doi:10.1002/pro.5560010502. PMC   2142235 . PMID   1304355.
  2. Rossi E, Meuser ME, Cunanan CJ, Cocklin S (January 2021). "Structure, Function, and Interactions of the HIV-1 Capsid Protein". Life. 11 (2): 100. Bibcode:2021Life...11..100R. doi: 10.3390/life11020100 . PMC   7910843 . PMID   33572761.
  3. 1 2 Larijani MS, Sadat SM, Bolhassani A, Pouriayevali MH, Bahramali G, Ramezani A (2019). "In Silico Design and Immunologic Evaluation of HIV-1 p24-Nef Fusion Protein to Approach a Therapeutic Vaccine Candidate". Current HIV Research. 16 (5): 322–337. doi:10.2174/1570162x17666190102151717. PMC   6446525 . PMID   30605062.
  4. Hurt CB, Nelson JA, Hightow-Weidman LB, Miller WC (December 2017). "Selecting an HIV Test: A Narrative Review for Clinicians and Researchers". Sexually Transmitted Diseases. 44 (12): 739–746. doi:10.1097/OLQ.0000000000000719. PMC   5718364 . PMID   29140890.
  5. Zhao G, Perilla JR, Yufenyuy EL, Meng X, Chen B, Ning J, et al. (May 2013). "Mature HIV-1 capsid structure by cryo-electron microscopy and all-atom molecular dynamics". Nature. 497 (7451): 643–646. Bibcode:2013Natur.497..643Z. doi:10.1038/nature12162. PMC   3729984 . PMID   23719463.
  6. Gitti RK, Lee BM, Walker J, Summers MF, Yoo S, Sundquist WI (July 1996). "Structure of the amino-terminal core domain of the HIV-1 capsid protein". Science. 273 (5272): 231–235. Bibcode:1996Sci...273..231G. doi:10.1126/science.273.5272.231. PMID   8662505. S2CID   5960953.
  7. Momany C, Kovari LC, Prongay AJ, Keller W, Gitti RK, Lee BM, et al. (September 1996). "Crystal structure of dimeric HIV-1 capsid protein". Nature Structural Biology. 3 (9): 763–770. doi:10.1038/nsb0996-763. PMID   8784350. S2CID   33672057.
  8. Du S, Betts L, Yang R, Shi H, Concel J, Ahn J, et al. (February 2011). "Structure of the HIV-1 full-length capsid protein in a conformationally trapped unassembled state induced by small-molecule binding". Journal of Molecular Biology. 406 (3): 371–386. doi:10.1016/j.jmb.2010.11.027. PMC   3194004 . PMID   21146540.
  9. Gamble TR, Yoo S, Vajdos FF, von Schwedler UK, Worthylake DK, Wang H, et al. (October 1997). "Structure of the carboxyl-terminal dimerization domain of the HIV-1 capsid protein". Science. 278 (5339): 849–853. Bibcode:1997Sci...278..849G. doi:10.1126/science.278.5339.849. PMID   9346481.
  10. Tan A, Pak AJ, Morado DR, Voth GA, Briggs JA (January 2021). "Immature HIV-1 assembles from Gag dimers leaving partial hexamers at lattice edges as potential substrates for proteolytic maturation". Proceedings of the National Academy of Sciences of the United States of America. 118 (3). Bibcode:2021PNAS..11820054T. doi: 10.1073/pnas.2020054118 . PMC   7826355 . PMID   33397805.
  11. 1 2 Obr M, Kräusslich HG (July 2018). "The secrets of the stability of the HIV-1 capsid". eLife. 7: e38895. doi: 10.7554/eLife.38895 . PMC   6067877 . PMID   30063007.
  12. Sokolskaja, Elena; Olivari, Silvia; Zufferey, Madeleine; Strambio-De-Castillia, Caterina; Pizzato, Massimo; Luban, Jeremy (May 2010). "Cyclosporine Blocks Incorporation of HIV-1 Envelope Glycoprotein into Virions". Journal of Virology. 84 (9): 4851–4855. doi:10.1128/JVI.01699-09. ISSN   0022-538X. PMC   2863729 . PMID   20181694.
  13. 1 2 Link JO, Rhee MS, Tse WC, Zheng J, Somoza JR, Rowe W, et al. (August 2020). "Clinical targeting of HIV capsid protein with a long-acting small molecule". Nature. 584 (7822): 614–618. Bibcode:2020Natur.584..614L. doi:10.1038/s41586-020-2443-1. PMC   8188729 . PMID   32612233.
  14. 1 2 Dvory-Sobol H, Shaik N, Callebaut C, Rhee MS (January 2022). "Lenacapavir: a first-in-class HIV-1 capsid inhibitor". Current Opinion in HIV and AIDS. 17 (1): 15–21. doi: 10.1097/COH.0000000000000713 . PMID   34871187. S2CID   244940471.
  15. Constantine N (February 1998). "HIV Antibody Assays". HIV InSite Knowledge Base. Archived from the original on 2001-06-25 via hivinsite.ucsf.edu.

Further reading