Tactopoda

Last updated

Tactopoda
Temporal range: Fortunian–Present
Waterbear.jpg
The tardigrade Hypsibius dujardini
The Childrens Museum of Indianapolis - Atlantic blue crab.jpg
The blue crab Callinectes sapidus , an arthropod
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Subkingdom: Eumetazoa
Clade: ParaHoxozoa
Clade: Bilateria
Clade: Nephrozoa
(unranked): Protostomia
Superphylum: Ecdysozoa
(unranked): Panarthropoda
(unranked): Tactopoda
Budd, 2001  [1]

Tactopoda or Arthropodoidea is a proposed clade of protostome animals that includes the phyla Tardigrada and Euarthropoda, supported by various morphological observations. [1] [2] [3] The cladogram below shows the relationships implied by this hypothesis.

Contents

Panarthropoda

The competing hypothesis is that Antennopoda [4] [5] (= Euarthropoda + Onychophora, the arthropods and the velvet worms) is monophyletic, [6] and tardigrades lie outside this grouping.

Panarthropoda

Anatomic arguments for the tactopoda monophyly include similarities in the anatomies of head, legs, and muscles between the arthropods and the tardigrades. Anatomic arguments against it include that tardigrades lack the kind of circulatory system (including a dorsal heart) which the arthropods and the velvet worms share. Graham Budd argued that the lack of this system in recent tardigrades is due to their miniature size, which makes a complex circulatory system superfluous; thus, the loss of this feature would be a secondary property, acquired as the tardigrade stem group turned smaller, and both the Euarthropoda+Onychophora circulatory system and a relatively large size should be a feature of the last common ancestor of all three groups. [1] However, Gregory Edgecombe also invoked phylogenomic evidence in favour of the alternative Euarthropoda+Onychophora grouping. [6]

Etymology

Budd formed the suggested clade name 'tactopoda' from Greek taktos, ordered, and poda, feet, "with reference to the alleged well-formed stepping motion that characterises the group". [1]

Proposed classification

Phylogeny

Related Research Articles

<span class="mw-page-title-main">Lobopodia</span> Group of extinct worm-like animals with legs

Lobopodians are members of the informal group Lobopodia, or the formally erected phylum Lobopoda Cavalier-Smith (1998). They are panarthropods with stubby legs called lobopods, a term which may also be used as a common name of this group as well. While the definition of lobopodians may differ between literatures, it usually refers to a group of soft-bodied, marine worm-like fossil panarthropods such as Aysheaia and Hallucigenia.

<span class="mw-page-title-main">Onychophora</span> Phylum of invertebrate animals

Onychophora, commonly known as velvet worms or more ambiguously as peripatus, is a phylum of elongate, soft-bodied, many-legged animals. In appearance they have variously been compared to worms with legs, caterpillars, and slugs. They prey upon other invertebrates, which they catch by ejecting an adhesive slime. Approximately 200 species of velvet worms have been described, although the true number of species is likely greater. The two extant families of velvet worms are Peripatidae and Peripatopsidae. They show a peculiar distribution, with the peripatids being predominantly equatorial and tropical, while the peripatopsids are all found south of the equator. It is the only phylum within Animalia that is wholly endemic to terrestrial environments, at least among extant members. Velvet worms are generally considered close relatives of the Arthropoda and Tardigrada, with which they form the proposed taxon Panarthropoda. This makes them of palaeontological interest, as they can help reconstruct the ancestral arthropod. Only two fossil species are confidently assigned to as onychophorans: Antennipatus from the Late Carboniferous, and Cretoperipatus from the Late Cretaceous, the latter belonging to Peripatidae. In modern zoology, they are particularly renowned for their curious mating behaviours and the bearing of live young in some species.

<i>Opabinia</i> Extinct stem-arthropod species found in Cambrian fossil deposits

Opabinia regalis is an extinct, stem group arthropod found in the Middle Cambrian Burgess Shale Lagerstätte of British Columbia. Opabinia was a soft-bodied animal, measuring up to 7 cm in body length, and its segmented trunk had flaps along the sides and a fan-shaped tail. The head shows unusual features: five eyes, a mouth under the head and facing backwards, and a clawed proboscis that probably passed food to the mouth. Opabinia probably lived on the seafloor, using the proboscis to seek out small, soft food. Fewer than twenty good specimens have been described; 3 specimens of Opabinia are known from the Greater Phyllopod bed, where they constitute less than 0.1% of the community.

<i>Aysheaia</i> Extinct genus of soft-bodied animals

Aysheaia is an extinct genus of soft-bodied lobopodian, known from the Middle Cambrian Burgess Shale of British Columbia, Canada

<span class="mw-page-title-main">Ecdysozoa</span> Superphylum of protostomes including arthropods, nematodes and others

Ecdysozoa is a group of protostome animals, including Arthropoda, Nematoda, and several smaller phyla. The grouping of these animal phyla into a single clade was first proposed by Eernisse et al. (1992) based on a phylogenetic analysis of 141 morphological characters of ultrastructural and embryological phenotypes. This clade, that is, a group consisting of a common ancestor and all its descendants, was formally named by Aguinaldo et al. in 1997, based mainly on phylogenetic trees constructed using 18S ribosomal RNA genes.

<span class="mw-page-title-main">Panarthropoda</span> Animal taxon

Panarthropoda is a proposed animal clade containing the extant phyla Arthropoda, Tardigrada and Onychophora. Panarthropods also include extinct marine legged worms known as lobopodians ("Lobopodia"), a paraphyletic group where the last common ancestor and basal members (stem-group) of each extant panarthropod phylum are thought to have risen. However the term "Lobopodia" is sometimes expanded to include tardigrades and onychophorans as well.

<span class="mw-page-title-main">Dinocaridida</span> Extinct class of basal arthropods

Dinocaridida is a proposed fossil taxon of basal arthropods that flourished in the Cambrian period with occasional Ordovician and Devonian records. Characterized by a pair of frontal appendages and series of body flaps, the name of Dinocaridids refers to the suggested role of some of these members as the largest marine predators of their time. Dinocaridids are occasionally referred to as the 'AOPK group' by some literatures, as the group compose of Radiodonta, Opabiniidae, and the "gilled lobopodians" Pambdelurion and Kerygmachelidae. It is most likely paraphyletic, with Kerygmachelidae and Pambdelurion more basal than the clade compose of Opabiniidae, Radiodonta and other arthropods.

<span class="mw-page-title-main">Cheloniellida</span> Order of arthropods (fossil)

Cheloniellida is a taxon of extinct Paleozoic arthropods. As of 2018, 7 monotypic genera of cheloniellids had been formally described, whose fossils are found in marine strata ranging from Ordovician to Devonian in age. Cheloniellida has a controversial phylogenetic position, with previous studies associated it as either a member or relative of various fossil and extant arthropod taxa. It was later accepted as a member of Vicissicaudata within Artiopoda.

<i>Pambdelurion</i> Extinct genus of Arthropod

Pambdelurion is an extinct genus of panarthropod from the Cambrian aged Sirius Passet site in northern Greenland. Like the morphologically similar Kerygmachela from the same locality, Pambdelurion is thought to be closely related to arthropods, combining characteristics of "lobopodians" with those of primitive arthropods.

<span class="mw-page-title-main">Arthropod head problem</span> Dispute concerning the evolution of arthropods

The (pan)arthropod head problem is a long-standing zoological dispute concerning the segmental composition of the heads of the various arthropod groups, and how they are evolutionarily related to each other. While the dispute has historically centered on the exact make-up of the insect head, it has been widened to include other living arthropods, such as chelicerates, myriapods, and crustaceans, as well as fossil forms, such as the many arthropods known from exceptionally preserved Cambrian faunas. While the topic has classically been based on insect embryology, in recent years a great deal of developmental molecular data has become available. Dozens of more or less distinct solutions to the problem, dating back to at least 1897, have been published, including several in the 2000s.

<span class="mw-page-title-main">Tardigrade</span> Phylum of microscopic animals, also known as water bears

Tardigrades, known colloquially as water bears or moss piglets, are a phylum of eight-legged segmented micro-animals. They were first described by the German zoologist Johann August Ephraim Goeze in 1773, who called them Kleiner Wasserbär. In 1777, the Italian biologist Lazzaro Spallanzani named them Tardigrada, which means "slow steppers".

<span class="mw-page-title-main">Arthropod</span> Phylum of invertebrates with jointed exoskeletons

Arthropods are invertebrates in the phylum Arthropoda. They possess an exoskeleton with a cuticle made of chitin, often mineralised with calcium carbonate, a body with differentiated (metameric) segments, and paired jointed appendages. In order to keep growing, they must go through stages of moulting, a process by which they shed their exoskeleton to reveal a new one. They are an extremely diverse group, with up to 10 million species.

<span class="mw-page-title-main">Radiodonta</span> Extinct order of basal arthropods

Radiodonta is an extinct order of stem-group arthropods that was successful worldwide during the Cambrian period. They may be referred to as radiodonts, radiodontans, radiodontids, anomalocarids, or anomalocaridids, although the last two originally refer to the family Anomalocarididae, which previously included all species of this order but is now restricted to only a few species. Radiodonts are distinguished by their distinctive frontal appendages, which are morphologically diverse and used for a variety of functions. Radiodonts included the earliest large predators known, but they also included sediment sifters and filter feeders. Some of the most famous species of radiodonts are the Cambrian taxa Anomalocaris canadensis, Hurdia victoria, Peytoia nathorsti, Titanokorys gainessii, Cambroraster falcatus and Amplectobelua symbrachiata, the Ordovician Aegirocassis benmoulai and the Devonian Schinderhannes bartelsi.

<i>Diania</i> Extinct genus of Cambrian animals

Diania is an extinct genus of lobopodian panarthropod found in the Lower Cambrian Maotianshan shale of China, represented by a single species - D. cactiformis. Known during its investigation by the nickname "walking cactus", this organism belongs to a group known as the armoured lobopodians, and has a simple worm-like body with robust, spiny legs. Initially, the legs were thought to have a jointed exoskeleton and Diania was suggested to be evolutionarily close to early arthropods, but many later studies have rejected this interpretation.

<i>Euperipatoides kanangrensis</i> Species of velvet worm

Euperipatoides kanangrensis is a species of velvet worm of the Peripatopsidae family, described in 1996 from specimens collected in Kanangra-Boyd National Park, New South Wales. This species has 15 pairs of legs in both sexes. It is endemic to Australia. The embryonic development of Euperipatoideskanangrensis has been described. This species is viviparous. This species is used as model organism for the last common ancestor of the Panarthropoda. It resembles fossil Cambrian lobopodians.

The biological systematics and taxonomy of invertebrates as proposed by Richard C. Brusca and Gary J. Brusca in 2003 is a system of classification of invertebrates, as a way to classify animals without backbones.

Gonzalo Giribet is a Spanish-American invertebrate zoologist and Alexander Agassiz Professor of zoology working on systematics and biogeography at the Museum of Comparative Zoology in Harvard University. He is a past president of the International Society for Invertebrate Morphology, of the Willi Hennig Society, and vice-president of the Sociedad Española de Malacología.

Luolishania is an extinct genus of lobopodian panarthropod and known from the Lower Cambrian Chiungchussu Formation of the Chengjiang County, Yunnan Province, China. A monotypic genus, it contains one species Luolishania longicruris. It was discovered and described by Hou Xian-Guang and Chen Jun-Yuan in 1989. It is one of the superarmoured Cambrian lobopodians suspected to be either an intermediate form in the origin of velvet worms (Onychophora) or basal to at least Tardigrada and Arthropoda. It is the basis of the family name Luolishaniidae, which also include other related lobopods such as Acinocricus, Collinsium, Facivermis, and Ovatiovermis. Along with Microdictyon, it is the first lobopodian fossil discovered from China.

<span class="mw-page-title-main">Deuteropoda</span> Clade of arthropods

Deuteropoda is a proposed clade of arthropods whose members are distinguished from more basal stem-group arthropods like radiodonts by an anatomical reorganization of the head region, namely the appearance of a differentiated first appendage pair, a multisegmented head, a hypostome/labrum complex, and by bearing pairs of segmented biramous limbs.

<span class="mw-page-title-main">Antennopoda</span>

The Antennopoda are a proposed clade consisting of the Euarthropoda and the Onychophora, as sister of the Tardigrada, together forming the Panarthropoda. Stanleycaris appears to be a basal Euarthropod.

References

  1. 1 2 3 4 Graham E. Budd (2001). "Tardigrades as 'stem-group arthropods': the evidence from the Cambrian fauna" (PDF). Zoologischer Anzeiger . 240 (3–4): 265–279. doi:10.1078/0044-5231-00034. Archived from the original (PDF) on 2016-03-03.
  2. Smith, M. R.; Ortega-Hernández, J. (2014). "Hallucigenia's onychophoran-like claws and the case for Tactopoda". Nature. 514 (7522): 363–366. Bibcode:2014Natur.514..363S. doi:10.1038/nature13576. PMID   25132546. S2CID   205239797.
  3. De Haro, A. (1998). "Origen y relaciones fitogenéticas entre Artrópodos, Onicóforos, Anélidos y Lofoforados, según datos moleculares y morfológicos". Boletín de la Real Sociedad Española de Historia Natural Sección Biológica. 94 (1–2): 103–113.
  4. Smith, Frank W.; Goldstein, Bob (2017-05-01). "Segmentation in Tardigrada and diversification of segmental patterns in Panarthropoda". Arthropod Structure & Development. Evolution of Segmentation. 46 (3): 328–340. Bibcode:2017ArtSD..46..328S. doi:10.1016/j.asd.2016.10.005. ISSN   1467-8039. PMID   27725256.
  5. Ortega-Hernández, Javier (2014-12-21). "Making sense of 'lower' and 'upper' stem-group Euarthropoda, with comments on the strict use of the name Arthropoda von Siebold, 1848: Upper and lower stem-Euarthropoda". Biological Reviews. 91 (1): 255–273. doi:10.1111/brv.12168. PMID   25528950. S2CID   7751936.
  6. 1 2 Gregory D. Edgecombe (2010). "Arthropod phylogeny: An overview from the perspectives of morphology, molecular data and the fossil record". Arthropod Structure & Development. 39 (2–3): 74–87. Bibcode:2010ArtSD..39...74E. doi:10.1016/j.asd.2009.10.002. PMID   19854297.