Tomato production in Florida

Last updated

Florida is the largest producer of fresh-market tomatoes in the United States. [1] [2]

Contents

Season

Harvest is almost year-round, from October to June. [1] The highest temperatures of the summer from July to September end profitable yield and even the heat of June and October limit productivity, such that April to May and November to January are the largest harvests of the year. [1] Federal Crop Insurance for fresh tomatoes specifically excludes insects and diseases. [3]

Diseases

Tomato Bacterial Spot is caused by Xanthomonas axonopodis pv. vesicatoria. Tomato Bacterial Speck is produced by Pseudomonas syringae pv. tomato. Both are economically significant in fresh-market tomato here. [4]

Treatments

Acibenzolar-S-methyl (ASM) is a plant activator producing systemic acquired resistance (SAR). [4] In a very widely regarded experiment Louws et al., 2001 used ASM to protect fresh tomato cultivation here against Tomato Bacterial Spot and Tomato Bacterial Speck. [4] Over four years they treated with ASM as an alternative to copper bactericide and achieved almost total control with no yield loss. [4] (Some fungicides were required to complement the bacterial control of ASM.) [4] This result is spoken of worldwide when discussing basic plant biology, SAR, induced systemic resistance, the biology of Xanthomonads, and the need for alternative pesticides due to resistance, including phage therapy in agriculture.[ citation needed ]

Labor

The Florida tomato industry has historically relied on migrant labor. [5] Exploitation of that labor was widespread with the town of Immokalee, Florida being "known as ground zero for modern day slavery." [6]

See also

Related Research Articles

Systemic acquired resistance (SAR) is a "whole-plant" resistance response that occurs following an earlier localized exposure to a pathogen. SAR is analogous to the innate immune system found in animals, and although there are many shared aspects between the two systems, it is thought to be a result of convergent evolution. The systemic acquired resistance response is dependent on the plant hormone, salicylic acid.

The gene-for-gene relationship was discovered by Harold Henry Flor who was working with rust (Melampsora lini) of flax (Linum usitatissimum). Flor showed that the inheritance of both resistance in the host and parasite ability to cause disease is controlled by pairs of matching genes. One is a plant gene called the resistance (R) gene. The other is a parasite gene called the avirulence (Avr) gene. Plants producing a specific R gene product are resistant towards a pathogen that produces the corresponding Avr gene product. Gene-for-gene relationships are a widespread and very important aspect of plant disease resistance. Another example can be seen with Lactuca serriola versus Bremia lactucae.

Leptosphaeria maculans is a fungal pathogen of the phylum Ascomycota that is the causal agent of blackleg disease on Brassica crops. Its genome has been sequenced, and L. maculans is a well-studied model phytopathogenic fungus. Symptoms of blackleg generally include basal stem cankers, small grey lesions on leaves, and root rot. The major yield loss is due to stem canker. The fungus is dispersed by the wind as ascospores or rain splash in the case of the conidia. L. maculans grows best in wet conditions and a temperature range of 5–20 degrees Celsius. Rotation of crops, removal of stubble, application of fungicide, and crop resistance are all used to manage blackleg. The fungus is an important pathogen of Brassica napus (canola) crops.

<i>Pseudomonas syringae</i> Species of bacterium

Pseudomonas syringae is a rod-shaped, Gram-negative bacterium with polar flagella. As a plant pathogen, it can infect a wide range of species, and exists as over 50 different pathovars, all of which are available to researchers from international culture collections such as the NCPPB, ICMP, and others.

<i>Xanthomonas</i> Genus of bacteria

Xanthomonas is a genus of bacteria, many of which cause plant diseases. There are at least 27 plant associated Xanthomonas spp., that all together infect at least 400 plant species. Different species typically have specific host and/or tissue range and colonization strategies.

<i>Pectobacterium carotovorum</i> Bacterial pathogen of several plants

Pectobacterium carotovorum is a bacterium of the family Pectobacteriaceae; it used to be a member of the genus Erwinia.

Xanthomonas arboricola is a species of bacteria. This phytopathogenic bacterium can cause disease in trees like Prunus, hazelnut and walnut.

Xanthomonas oryzae is a species of bacteria. The major host of the bacterium is rice.

<span class="mw-page-title-main">Plant disease resistance</span> Ability of a plant to stand up to trouble

Plant disease resistance protects plants from pathogens in two ways: by pre-formed structures and chemicals, and by infection-induced responses of the immune system. Relative to a susceptible plant, disease resistance is the reduction of pathogen growth on or in the plant, while the term disease tolerance describes plants that exhibit little disease damage despite substantial pathogen levels. Disease outcome is determined by the three-way interaction of the pathogen, the plant and the environmental conditions.

Black rot, caused by the bacterium Xanthomonas campestris pv. campestris (Xcc), is considered the most important and most destructive disease of crucifers, infecting all cultivated varieties of brassicas worldwide. This disease was first described by botanist and entomologist Harrison Garman in Lexington, Kentucky, US in 1889. Since then, it has been found in nearly every country in which vegetable brassicas are commercially cultivated.

<span class="mw-page-title-main">Banana Xanthomonas wilt</span> Bacterial disease of banana plants

Banana Xanthomonas Wilt (BXW), or banana bacterial wilt (BBW) or enset wilt is a bacterial disease caused by Xanthomonas campestris pv. musacearum. After being originally identified on a close relative of banana, Ensete ventricosum, in Ethiopia in the 1960s, BXW emanated in Uganda in 2001 affecting all types of banana cultivars. Since then BXW has been diagnosed in Central and East Africa including banana growing regions of: Rwanda, Democratic Republic of the Congo, Tanzania, Kenya, Burundi, and Uganda.

<i>Xanthomonas campestris</i> pv. <i>vesicatoria</i> Species of bacterium

Xanthomonas campestris pv. vesicatoria is a bacterium that causes bacterial leaf spot (BLS) on peppers and tomatoes. It is a gram-negative and rod-shaped. It causes symptoms throughout the above-ground portion of the plant including leaf spots, fruit spots and stem cankers. Since this bacterium cannot live in soil for more than a few weeks and survives as inoculum on plant debris, removal of dead plant material and chemical applications to living plants are considered effective control mechanisms.

Bacterial blight of cotton is a disease affecting the cotton plant resulting from infection by Xanthomonas axonopodis pathovar malvacearum (Xcm) a Gram negative, motile rod-shaped, non spore-forming bacterium with a single polar flagellum

<span class="mw-page-title-main">Beet vascular necrosis</span> Bacterial disease in beet plants

Beet vascular necrosis and rot is a soft rot disease caused by the bacterium Pectobacterium carotovorum subsp. betavasculorum, which has also been known as Pectobacterium betavasculorum and Erwinia carotovora subsp. betavasculorum. It was classified in the genus Erwinia until genetic evidence suggested that it belongs to its own group; however, the name Erwinia is still in use. As such, the disease is sometimes called Erwinia rot today. It is a very destructive disease that has been reported across the United States as well as in Egypt. Symptoms include wilting and black streaks on the leaves and petioles. It is usually not fatal to the plant, but in severe cases the beets will become hollowed and unmarketable. The bacteria is a generalist species which rots beets and other plants by secreting digestive enzymes that break down the cell wall and parenchyma tissues. The bacteria thrive in warm and wet conditions, but cannot survive long in fallow soil. However, it is able to persist for long periods of time in the rhizosphere of weeds and non-host crops. While it is difficult to eradicate, there are cultural practices that can be used to control the spread of the disease, such as avoiding injury to the plants and reducing or eliminating application of nitrogen fertilizer.

<i>Xanthomonas oryzae</i> pv. <i>oryzae</i> Variety of bacteria

Xanthomonas oryzae pv. oryzae is a bacterial pathovar that causes a serious blight of rice, other grasses, and sedges.

Florida was ranked in 2019, "first in the value of production for fresh market bell peppers and tomatoes, as well as grapefruit, oranges, sugarcane, and watermelons" in the United States according to Florida Agriculture by the Numbers. In 2002 peppers and tomatoes were #1 and #2 in dollar value for the state and citrus fruit, especially oranges, were also a major part of the economy. By 2019 tomatoes were #1, oranges #2, and peppers were #3. Of exports, meat is Florida's biggest earner. Florida produces the majority of citrus fruit grown in the United States.

<span class="mw-page-title-main">Amy O. Charkowski</span> American plant pathologist

Amy Olymbia Charkowski is an American plant pathologist and Professor of Plant Pathology at Colorado State University. She was elected Fellow of the American Association for the Advancement of Science in 2020.

Samuel S. Gnanamanickam is an Indian plant pathologist. He is known for his research on diversity of rice pathogens, molecular breeding of indica rices for disease resistance and for developing superior strains of beneficial strains of rhizosphere bacteria for biological control of rice diseases. He is a fellow of the National Academy of Agricultural Sciences and National Academy of Biological Sciences of India and was Chair of the biological control committee at the American Phytopathological Society. He was named by Marquis Who's Who as a noteworthy plant pathologist.

Xanthomonas pruni is a bacterial disease of almost all Prunus.

References

  1. 1 2 3 "FE1027/FE1027: The US Tomato Industry: An Overview of Production and Trade". Electronic Data Information Source (EDIS). Institute of Food and Agricultural Sciences (IFAS), University of Florida. 2021-08-30. FE1027. Retrieved 2022-06-28.
  2. "Tomatoes". Agricultural Marketing Resource Center. 2022-06-27. Retrieved 2022-06-28.
  3. "7 CFR § 457.139 - Fresh market tomato (dollar plan) crop insurance provisions". Legal Information Institute (LII). 2016-07-25. Retrieved 2022-06-28.
  4. 1 2 3 4 5
  5. Jonsson, Patrik. "Trafficking: In Florida's tomato fields, a fight for ethical farm labor grows". Christian Science Monitor. Retrieved 15 May 2023.
  6. Cohen, Lisa (30 May 2017). "How America's 'ground-zero' for modern slavery was cleaned up by workers' group". CNN. cnn.com. Retrieved 15 May 2023.