Underground hard-rock mining

Last updated
A 3D diagram of a modern underground mine with shaft access Underground 3D model.jpg
A 3D diagram of a modern underground mine with shaft access

Underground hard-rock mining refers to various underground mining techniques used to excavate "hard" minerals, usually those containing metals, [1] such as ore containing gold, silver, iron, copper, zinc, nickel, tin, and lead. It also involves the same techniques used to excavate ores of gems, such as diamonds and rubies. Soft-rock mining refers to the excavation of softer minerals, such as salt, coal, and oil sands.

Contents

Mine access

Underground access

Accessing underground ore can be achieved via a decline (ramp), inclined vertical shaft or adit.

Decline portal Wiluna underground.jpg
Decline portal

Declines are often started from the side of the high wall of an open cut mine when the ore body is of a payable grade sufficient to support an underground mining operation, but the strip ratio has become too great to support open cast extraction methods. They are also often built and maintained as an emergency safety access from the underground workings and a means of moving large equipment to the workings.

Ore access

Levels are excavated horizontally off the decline or shaft to access the ore body. Stopes are then excavated perpendicular (or near perpendicular) to the level into the ore.

Development mining vs. production mining

There are two principal phases of underground mining: development mining and production mining.

Development mining is composed of excavation almost entirely in (non-valuable) waste rock in order to gain access to the orebody. There are six steps in development mining: remove previously blasted material (muck out round), scaling (removing any unstable slabs of rock hanging from the roof and sidewalls to protect workers and equipment from damage), installing support or/and reinforcement using shotcrete etceteras, drill face rock, load explosives, and blast explosives. To start the mining, the first step is to make the path to go down. The path is defined as 'Decline' as describe above. Before the start of a decline, all pre-planning of the power facility, drilling arrangement, de-watering, ventilation and, muck withdrawal facilities are required. [2]

Production mining is further broken down into two methods, long hole and short hole. Short hole mining is similar to development mining, except that it occurs in ore. There are several different methods of long hole mining. Typically, long hole mining requires two excavations within the ore at different elevations below surface, (15 m – 30 m apart). Holes are drilled between the two excavations and loaded with explosives. The holes are blasted and the ore is removed from the bottom excavation.

Ventilation

Door for directing ventilation in an old lead mine. The ore hopper at the front is not part of the ventilation. Smallcleugh door.jpg
Door for directing ventilation in an old lead mine. The ore hopper at the front is not part of the ventilation.

One of the most important aspects of underground hard rock mining is ventilation. Ventilation is the primary method of clearing hazardous gases and/or dust which are created from drilling and blasting activity (e.g., silica dust, NOx), diesel equipment (e.g., diesel particulate, carbon monoxide), or to protect against gases that are naturally emanating from the rock (e.g., radon gas). Ventilation is also used to manage underground temperatures for the workers. In deep, hot mines ventilation is used to cool the workplace; however, in very cold locations the air is heated to just above freezing before it enters the mine. Ventilation raises are typically used to transfer ventilation from surface to the workplaces, and can be modified for use as emergency escape routes. The primary sources of heat in underground hard rock mines are virgin rock temperature, machinery, auto compression, and fissure water. Other small contributing factors are human body heat and blasting.

Ground support

Some means of support is required in order to maintain the stability of the openings that are excavated. This support comes in two forms; local support and area support.

Area ground support

Area ground support is used to prevent major ground failure. Holes are drilled into the back (ceiling) and walls and a long steel rod (or rock bolt) is installed to hold the ground together. There are three categories of rock bolt, differentiated by how they engage the host rock. [3] They are:

Mechanical bolts

  • Point anchor bolts (or expansion shell bolts) are a common style of area ground support. A point anchor bolt is a metal bar between 20 mm – 25 mm in diameter, and between 1 m – 4 m long (the size is determined by the mine's engineering department). There is an expansion shell at the end of the bolt which is inserted into the hole. As the bolt is tightened by the installation drill the expansion shell expands and the bolt tightens holding the rock together. Mechanical bolts are considered temporary support as their lifespan is reduced by corrosion as they are not grouted. [3]

Grouted bolts

  • Resin grouted rebar is used in areas which require more support than a point anchor bolt can give. The rebar used is of similar size as a point anchor bolt but does not have an expansion shell. Once the hole for the rebar is drilled, cartridges of polyester resin are installed in the hole. The rebar bolt is installed after the resin and spun by the installation drill. This opens the resin cartridge and mixes it. Once the resin hardens, the drill spinning tightens the rebar bolt holding the rock together. Resin grouted rebar is considered a permanent ground support with a lifespan of 20–30 years. [3]
  • Cable bolts are used to bind large masses of rock in the hanging wall and around large excavations. Cable bolts are much larger than standard rock bolts and rebar, usually between 6 and 25 metres long. Cable bolts are grouted with a cement grout. [3]

Friction bolts

  • Friction stabilizer (frequently called by the genericized trademark Split Set) are much easier to install than mechanical bolts or grouted bolts. The bolt is hammered into the drill hole, which has a smaller diameter than the bolt. Pressure from the bolt on the wall holds the rock together. Friction stabilizers are particularly susceptible to corrosion and rust from water unless they are grouted. Once grouted the friction increases by a factor of 3–4. [3]
  • Swellex is similar to Friction stabilizers, except the bolt diameter is smaller than the hole diameter. High pressure water is injected into the bolt to expand the bolt diameter to hold the rock together. Like the friction stabilizer, swellex is poorly protected from corrosion and rust. [3]

Local ground support

Local ground support is used to prevent smaller rocks from falling from the back and ribs. Not all excavations require local ground support.

Stope and retreat vs. stope and fill

Stope and retreat

Sub-Level Caving Subsidence reaches surface at the Ridgeway underground mine. Elura.png
Sub-Level Caving Subsidence reaches surface at the Ridgeway underground mine.

Using this method, mining is planned to extract rock from the stopes without filling the voids; this allows the wall rocks to cave in to the extracted stope after all the ore has been removed. The stope is then sealed to prevent access.

Stope and fill

Where large bulk ore bodies are to be mined at great depth, or where leaving pillars of ore is uneconomical, the open stope is filled with backfill, which can be a cement and rock mixture, a cement and sand mixture or a cement and tailings mixture. This method is popular as the refilled stopes provide support for the adjacent stopes, allowing total extraction of economic resources.

Methods

Schematic diagram of cut and fill mining Cut and fill schematic.png
Schematic diagram of cut and fill mining

The mining method selected is determined by the size, shape, orientation and type of orebody to be mined. The orebody can be narrow vein such as a gold mine in the Witwatersrand, the orebody can be massive similar to the Olympic Dam mine, South Australia, or Cadia-Ridgeway Mine, New South Wales. The width or size of the orebody is determined by the grade as well as the distribution of the ore. The dip of the orebody also has an influence on the mining method for example a narrow horizontal vein orebody will be mined by room and pillar or a longwall method whereas a vertical narrow vein orebody will be mined by an open stoping or cut and fill method. Further consideration is needed for the strength of the ore as well as the surrounding rock. An orebody hosted in strong self-supporting rock may be mined by an open stoping method and an orebody hosted in poor rock may need to be mined by a cut and fill method where the void is continuously filled as the ore is removed.

Selective mining methods

[7]

Bulk mining methods

Orebodies that do not cave readily are sometimes preconditioned by hydraulic fracturing, blasting, or by a combination of both. Hydraulic fracturing has been applied to preconditioning strong roof rock over coal longwall panels, and to inducing caving in both coal and hard rock mines.


Ore removal

In mines which use rubber-tired equipment for coarse ore removal, the ore (or "muck") is removed ("mucked out" or "bogged") from the stope using center articulated vehicles. These vehicles are referred to as "boggers" or LHD (Load, Haul, Dump machines). These pieces of equipment may operate using diesel engines or electric motors, and resemble a low-profile front end loader. Electrically powered LHD utilize trailing cables which are flexible and can be extended or retracted on a reel. [12]

In shallower mines the ore is then dumped into a truck to be hauled to the surface. In deeper mines, the ore is dumped down an ore pass (a vertical or near vertical excavation) where it falls to a collection level. On the collection level, it may receive primary crushing by a jaw or cone crusher, or by a rockbreaker. The ore is then moved by conveyor belts, trucks or occasionally trains to the shaft to be hoisted to the surface in buckets or skips and emptied into bins beneath the surface headframe for transport to the mill.

In some cases the underground primary crusher feeds an inclined conveyor belt which delivers ore via an incline shaft direct to the surface. The ore is fed down ore passes, with mining equipment accessing the ore body via a decline from the surface.

Deepest mines

See also

Related Research Articles

<span class="mw-page-title-main">Gunnies</span> Space left in a mine after the extraction of a vertical lode

A gunnies, gunnis, or gunniss is the space left in a mine after the extraction by stoping of a vertical or near vertical ore-bearing lode. The term is also used when this space breaks the surface of the ground, but it can then be known as a coffin or goffen. It can also be used to describe the deep trenches that were dug by early miners in following the ore-bearing lode downwards from the surface – in this case they are often called open-works; their existence can provide the earliest evidence of mining in an area. William Pryce, writing in 1778, also used the term as a measure of width, a single gunnies being equal to three feet.

<span class="mw-page-title-main">Quarry</span> A place from which a geological material has been excavated from the ground

A quarry is a type of open-pit mine in which dimension stone, rock, construction aggregate, riprap, sand, gravel, or slate is excavated from the ground. The operation of quarries is regulated in some jurisdictions to manage their safety risks and reduce their environmental impact.

<span class="mw-page-title-main">Open-pit mining</span> Surface mining technique

Open-pit mining, also known as open-cast or open-cut mining and in larger contexts mega-mining, is a surface mining technique that extracts rock or minerals from the earth.

<span class="mw-page-title-main">Borehole</span> Narrow shaft bored in the ground

A borehole is a narrow shaft bored in the ground, either vertically or horizontally. A borehole may be constructed for many different purposes, including the extraction of water, other liquids, or gases. It may also be part of a geotechnical investigation, environmental site assessment, mineral exploration, temperature measurement, as a pilot hole for installing piers or underground utilities, for geothermal installations, or for underground storage of unwanted substances, e.g. in carbon capture and storage.

<span class="mw-page-title-main">Shaft sinking</span> Process of excavating a vertical or near vertical tunnel from the top down

Shaft mining or shaft sinking is the action of excavating a mine shaft from the top down, where there is initially no access to the bottom. Shallow shafts, typically sunk for civil engineering projects, differ greatly in execution method from deep shafts, typically sunk for mining projects.

<span class="mw-page-title-main">Drilling and blasting</span> Excavation method using explosives

Drilling and blasting is the controlled use of explosives and other methods, such as gas pressure blasting pyrotechnics, to break rock for excavation. It is practiced most often in mining, quarrying and civil engineering such as dam, tunnel or road construction. The result of rock blasting is often known as a rock cut.

<span class="mw-page-title-main">Harmony Gold (mining)</span> Gold mining company in South Africa

Harmony Gold is the largest gold mining company in South Africa. Harmony operates in South Africa and in Papua New Guinea. The company has nine underground mines, one open-pit mine and several surface operations in South Africa. In Papua New Guinea, it has Hidden Valley, an open-pit gold and silver mine and a 50% interest in the Morobe Mining Joint Venture, which includes the Wafi-Golpu project and extensive exploration tenements. Outside the joint venture, Harmony's own exploration portfolio focuses principally on highly prospective areas in Papua New Guinea.

<span class="mw-page-title-main">Mine exploration</span> Hobby of visiting abandoned mines

Mine exploration is a hobby in which people visit abandoned mines, quarries, and sometimes operational mines. Enthusiasts usually engage in such activities for the purpose of exploration and documentation, sometimes through the use of surveying and photography. In this respect, mine exploration might be considered a type of amateur industrial archaeology. In many ways, however, it is closer to caving, with many participants actively interested in exploring both mines and caves. Mine exploration typically requires equipment such as helmets, head lamps, Wellington boots, and climbing gear.

<span class="mw-page-title-main">Challenger mine</span> Mine in South Australia

The Challenger mine is a gold mine in the Far North of South Australia, 165 km west of the Stuart Highway and 740 km north-west of Adelaide. It was operated by Dominion, Kingsgate and then WPG Resources. The mine is now on Care and Maintenance. The deposit was named by the geologist who discovered it, after his dog.

<span class="mw-page-title-main">Creighton Mine</span> Underground mine in Ontario, Canada

Creighton Mine is an underground nickel, copper, and platinum-group elements (PGE) mine. It is presently owned and operated by Vale Limited in the city of Greater Sudbury, Ontario, Canada. Open pit mining began in 1901, and underground mining began in 1906. The mine is situated in the Sudbury Igneous Complex (SIC) in its South Range geologic unit. The mine is the source of many excavation-related seismic events, such as earthquakes and rock burst events. It is home to SNOLAB, and is currently the deepest nickel mine in Canada. Expansion projects to deepen the Creighton Mine are currently underway.

<span class="mw-page-title-main">Outline of mining</span> Overview of and topical guide to mining

The following outline is provided as an overview of and topical guide to mining:

<span class="mw-page-title-main">Stoping</span> Process of extracting mineral from an underground mine

Stoping is the process of extracting the desired ore or other mineral from an underground mine, leaving behind an open space known as a stope. Stoping is used when the country rock is sufficiently strong not to collapse into the stope, although in most cases artificial support is also provided.

<span class="mw-page-title-main">Boring (earth)</span> Drilling into the Earth

Boring is drilling a hole, tunnel, or well in the Earth. It is used for various applications in geology, agriculture, hydrology, civil engineering, and mineral exploration. Today, most Earth drilling serves one of the following purposes:

<span class="mw-page-title-main">Mining in the Upper Harz</span> Historical German industry

Mining in the Upper Harz region of central Germany was a major industry for several centuries, especially for the production of silver, lead, copper, and, latterly, zinc as well. Great wealth was accumulated from the mining of silver from the 16th to the 19th centuries, as well as from important technical inventions. The centre of the mining industry was the group of seven Upper Harz mining towns of Clausthal, Zellerfeld, Sankt Andreasberg, Wildemann, Grund, Lautenthal und Altenau.

<span class="mw-page-title-main">Pinge</span>

A Pinge or Binge ("binger") is the name given in German-speaking Europe to a wedge-, ditch- or funnel-shaped depression in the terrain caused by mining activity. This depression or sink-hole is frequently caused by the collapse of old underground mine workings that are close to the Earth's surface. Unlike natural landforms, a Pinge is a direct result of human activity. The term has no direct equivalent in English, but may be translated as "mining sink-hole", "mine slump" or, in some cases, as "glory hole".

The Pogo mine is a gold mine in the state of Alaska. By 31 December 2017 Pogo had produced 3.6 million ounces of gold at a grade of 13.6 g/t. Annual production for 2020 was 205,878 ounces. At 31 December 2019 the mine had Proven and Probable Reserves of 1.5 million ounces of gold at a grade of 7.5 g/t (JORC). It is located 30 miles (48 km) northeast of Delta Junction and 90 miles (145 km) east of Fairbanks. Northern Star Resources Ltd announced in May 2020 that it had entered into an agreement with the Japan-based Sumitomo Metal Mining Co and Sumitomo Corp to acquire the Pogo Gold mine.

<span class="mw-page-title-main">LHD (load, haul, dump machine)</span>

LHD loaders are similar to conventional front end loaders but developed for the toughest of hard rock mining applications, keeping overall production economy, safety, and reliability in consideration. They are extremely rugged, highly maneuverable, and exceptionally productive. More than 75% of the world's underground metal mines use LHD for handling the muck of their excavations.

Deep level underground is construction that is 20 m (66 ft) or more below ground and not using the cut-and-cover method, especially train stations, air raid shelters and bunkers, and some tunnels and mines. Cut-and-cover is a simple method of construction for shallow tunnels where a trench is excavated and roofed over with an overhead support structure that is strong enough to carry the load of what is to be built above the tunnel.

The Rajpura Dariba Mine VRM disaster took place in Dariba, Udaipur, India on 28 August 1994 at a mine operated by Hindustan Zinc Ltd.

<span class="mw-page-title-main">Rock Bolting Development Site</span> Historic site in New South Wales, Australia

Rock Bolting Development Site is a heritage-listed former rock bolt experiment site at Sharp Street, Cooma, Snowy Monaro Regional Council, New South Wales, Australia. It was used by Snowy Mountains Hydro-Electric Authority personnel from 1956 to 1962. It was added to the New South Wales State Heritage Register on 23 December 2016.

References

  1. de la Vergne, Jack (2003). Hard Rock Miner's Handbook . Tempe/North Bay: McIntosh Engineering. p. 2. ISBN   0-9687006-1-6.
  2. Brazil, M. "Decline design in underground mines using constrained path optimisation" (PDF). math.uwaterloo.ca. Archived from the original (PDF) on 2010-11-24. Retrieved 19 Jun 2023.
  3. 1 2 3 4 5 6 Puhakka, Tulla (1997). Underground Drilling and Loading Handbook. Finland: Tamrock Corporation. pp. 153–170.
  4. 1 2 3 Puhakka, Tulla (1997). Underground Drilling and Loading Handbook. Finland: Tamrock Corporation. pp. 98–130.
  5. "The In-The-Hole Drill | Dirty Great Machines | Discovery Science". Archived from the original on 2017-02-02. Retrieved 2017-01-29.
  6. "Vale Inco's Creighton mine: Digging deeper by the day". Viewpoint (3): 2. 2008. Archived from the original on 2015-06-21. Vertical retreat mining (VRM) was introduced in the mid-1980s to replace the cut-and-fill mining method. The slot-slash mining method, a modified VRM, was introduced in the late 1990s and replaced the VRM mining.
  7. "Mining & Metallurgy 101". www.miningbasics.com. Archived from the original on 2011-12-06. Retrieved 2017-01-27.
  8. Fowler, J. C. W.; Hebblewhite, B. K. (2003). "Mining publication" (PDF). New South Wales. Archived (PDF) from the original on 2006-09-20. Retrieved 2007-05-30.
  9. Sjöberg, J., F. Perman, D. Lope Álvarez, B-M. Stöckel, K. Mäkitaavola, E. Storvall and T. Lavoie. "Deep sublevel cave mining and surface influence", in: Deep Mining 2017: Eighth International Conference on Deep and High Stress Mining (Perth, March 28–30, 2018). Wesseloo, J. (ed.), pp. 357 –372. Perth: Australian Centre for Geomechanics, Perth, ISBN 978-0-9924810-6-3, 2017.
  10. Ladinig, Tobias; Wagner, Horst; Karlsson, Wimmer; Grynienko, Michal (2022). "Raise Caving—A Hybrid Mining Method Addressing Current Deep Cave Mining Challenges". BHM Berg- und Hüttenmännische Monatshefte. 167 (4): 177–186. Bibcode:2022BHM...167..177L. doi:10.1007/s00501-022-01217-3.
  11. "LKAB utvecklar ny brytningsmetod – så går metoden raise caving till". SVT (in Swedish). 2021-06-08. Retrieved 2024-06-21.
  12. http://www.mineweb.com/archive/greGreener underground mining[ dead link ]
  13. "TauTona, Anglo Gold, South Africa". 2009. Archived from the original on 2019-05-12. Retrieved 2009-05-01.
  14. Godkin, David (1 February 2014). "Being safe is no accident". Canadian Mining Journal. Archived from the original on 19 July 2019. Retrieved 19 February 2020.
  15. "Home | Kidd Operations". Archived from the original on 2020-03-02. Retrieved 2020-02-19.
  16. "Agnico Eagle Mines Limited - Operations - Operations - LaRonde Complex". www.agnicoeagle.com. Archived from the original on 2022-02-01. Retrieved 2022-02-01.
  17. "Skalisty mine reaches design depth of 2,056 m below surface – Nornickel".
  18. "Mineral deposits: from their origin to their environmental impacts". Taylor & Francis. 1995. ISBN   978-9054105503.

Further reading