Autolysins are endogenous lytic enzymes that break down the peptidoglycan components of biological cells which enables the separation of daughter cells following cell division. [1] [2] [3] [4] [5] They are involved in cell growth, cell wall metabolism, cell division and separation, as well as peptidoglycan turnover and have similar functions to lysozymes. [6]
Autolysin is formed from the precursor gene, Atl. Amidases (EC 3.5.1.28), gametolysin (EC 3.4.24.38), and glucosaminidase are considered as types of autolysins. [4] [6]
Autolysins exist in all bacteria containing peptidoglycan and are potentially considered as lethal enzymes when uncontrolled. [7] They target the glycosidic bonds as well as the cross-linked peptides of the peptidoglycan matrix. [8] The peptidoglycan matrix functions for cell wall stability to protect from turgor changes and carries out function for immunological defense. [9] [10] These enzymes break down the peptidoglycan matrix in small sections to allow for peptidoglycan biosynthesis. [4] Autolysins breaks down old peptidoglycan which allows for the formation of newer peptidoglycan for cell growth and elongation. This is called cell wall turnover. [6] Autolysins do this by hydrolyzing the β-(1,4) glycosidic bond of the peptidoglycan cell wall and the linkage between N-acetylmuramoyl residues and L-amino acid residues of certain cell-wall glycopeptides. [4] This enzyme catalyses the following chemical reaction:
This glycoprotein is present in Chlamydomonas reinhardtii gametes.
Gram-positive bacteria regulate autolysins with teichoic acid molecules attached to the tetrapeptide of the peptidoglycan matrix.
The antibiotics complestatin and corbomycin prevent autolysin from remodeling the cell wall by binding to peptidoglycan, therefore stopping bacterial growth. [11] The amide linkages between stem peptide and lactyl moiety of muramoyl residue are cleaved by N-acetylmuramoyl-l-alanine amidases and partakes in cell separation and the dissociation of the cell septum. [4] There are 5 types of autolysins that contribute to cell separation of daughter cells, LytC, LytD, LytE, and LytF. [6]
In a study conducted with mice, those that were immunized with autolysin were able to survive longer than the infected mice. This study was able to support as evidence autolysin's contribution in virulence and potential for vaccine antigen. [12]
N-acetylmuramoyl-L-alanine amidase | |||||||||
---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||
EC no. | 3.5.1.28 | ||||||||
CAS no. | 9013-25-6 | ||||||||
Databases | |||||||||
IntEnz | IntEnz view | ||||||||
BRENDA | BRENDA entry | ||||||||
ExPASy | NiceZyme view | ||||||||
KEGG | KEGG entry | ||||||||
MetaCyc | metabolic pathway | ||||||||
PRIAM | profile | ||||||||
PDB structures | RCSB PDB PDBe PDBsum | ||||||||
Gene Ontology | AmiGO / QuickGO | ||||||||
|
LytC and CwlC are two amidases from the LytC family that hydrolyze the peptidoglycan of the mother cell wall to allow for the release of the mature endospore. CwlC is directly found in the mother cell wall. [6]
Expression of lytC, lytD, and lytF genes together leads to flagellar motility and is controlled by the activity of the chemotaxis sigma factor, σD. The activity of this sigma factor peaks at the start of the stationary phase. [6]
Autolysins are naturally produced by peptidoglycan containing bacteria, but excessive amounts will degrade the peptidoglycan matrix and cause the cell to burst due to osmotic pressure. Previous studies have found that the byproducts of autolysin during cell wall breakdown are highly immunogenic. [12] When observed in the bacteria, Bacillus subtilis , there were potentially lethal amounts of autolysin found in the cell walls. [6] In Streptococcus pneumoniae it was found that N-acetylmuramoyl-l-alanine amidase, a cell wall autolysin, could assist in pathogenesis due to its ability to break down the wall or lyse a portion of the invading pneumococci and release potentially lethal toxins into the cell. Researchers studied the function, structure, and cloning ability through Escherichia coli and also determined its nucleotide sequence. [12]
LytC as well as LytD are considered as two major autolysins that contribute to vegetative cell wall growth and account for 95% of the autolytic activity in B. subtilis. LytC is found in the cell wall. LytB, a non-autolysin, was found to enhance LytC activity. [6] LytC and LytA interact and function together for lysis and cell death. [13]
Gametolysin | |||||||||
---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||
EC no. | 3.4.24.38 | ||||||||
CAS no. | 97089-74-2 | ||||||||
Databases | |||||||||
IntEnz | IntEnz view | ||||||||
BRENDA | BRENDA entry | ||||||||
ExPASy | NiceZyme view | ||||||||
KEGG | KEGG entry | ||||||||
MetaCyc | metabolic pathway | ||||||||
PRIAM | profile | ||||||||
PDB structures | RCSB PDB PDBe PDBsum | ||||||||
|
CwlC is found in the mother cell wall and functions for the lysis of the mother cell wall. [6] CwlC does not have a signal sequence but participates in late sporulation and is present in the cell wall. [14] [15] It was found in B. subtilis that CwlC is able to hydrolyze both vegetative cell walls and spore peptidoglycan. [14]
This family of autolysin consist of only LytD itself. LytD functions for vegetative growth. Autolytic activity is found within the C-terminal region with catalytic domain homologous to the glucosaminidase domain. LytD is found in the cell wall. LytD activity was studied in B. subtilis and glucosaminidase activity was found in mature glycan strands due to the presence of MurNAc at the nonreducing ends. [6]
An endospore is a dormant, tough, and non-reproductive structure produced by some bacteria in the phylum Bacillota. The name "endospore" is suggestive of a spore or seed-like form, but it is not a true spore. It is a stripped-down, dormant form to which the bacterium can reduce itself. Endospore formation is usually triggered by a lack of nutrients, and usually occurs in gram-positive bacteria. In endospore formation, the bacterium divides within its cell wall, and one side then engulfs the other. Endospores enable bacteria to lie dormant for extended periods, even centuries. There are many reports of spores remaining viable over 10,000 years, and revival of spores millions of years old has been claimed. There is one report of viable spores of Bacillus marismortui in salt crystals approximately 250 million years old. When the environment becomes more favorable, the endospore can reactivate itself into a vegetative state. Most types of bacteria cannot change to the endospore form. Examples of bacterial species that can form endospores include Bacillus cereus, Bacillus anthracis, Bacillus thuringiensis, Clostridium botulinum, and Clostridium tetani. Endospore formation is not found among Archaea.
Teichoic acids are bacterial copolymers of glycerol phosphate or ribitol phosphate and carbohydrates linked via phosphodiester bonds.
Methicillin (USAN), also known as meticillin (INN), is a narrow-spectrum β-lactam antibiotic of the penicillin class.
Bacillus subtilis, known also as the hay bacillus or grass bacillus, is a Gram-positive, catalase-positive bacterium, found in soil and the gastrointestinal tract of ruminants, humans and marine sponges. As a member of the genus Bacillus, B. subtilis is rod-shaped, and can form a tough, protective endospore, allowing it to tolerate extreme environmental conditions. B. subtilis has historically been classified as an obligate aerobe, though evidence exists that it is a facultative anaerobe. B. subtilis is considered the best studied Gram-positive bacterium and a model organism to study bacterial chromosome replication and cell differentiation. It is one of the bacterial champions in secreted enzyme production and used on an industrial scale by biotechnology companies.
Bacitracin is a polypeptide antibiotic. It is a mixture of related cyclic peptides produced by Bacillus licheniformis bacteria, that was first isolated from the variety "Tracy I" in 1945. These peptides disrupt gram-positive bacteria by interfering with cell wall and peptidoglycan synthesis.
Lysins, also known as endolysins or murein hydrolases, are hydrolytic enzymes produced by bacteriophages in order to cleave the host's cell wall during the final stage of the lytic cycle. Lysins are highly evolved enzymes that are able to target one of the five bonds in peptidoglycan (murein), the main component of bacterial cell walls, which allows the release of progeny virions from the lysed cell. Cell-wall-containing Archaea are also lysed by specialized pseudomurein-cleaving lysins, while most archaeal viruses employ alternative mechanisms. Similarly, not all bacteriophages synthesize lysins: some small single-stranded DNA and RNA phages produce membrane proteins that activate the host's autolytic mechanisms such as autolysins.
In enzymology, an alanine racemase is an enzyme that catalyzes the chemical reaction
Autoinducers are signaling molecules that are produced in response to changes in cell-population density. As the density of quorum sensing bacterial cells increases so does the concentration of the autoinducer. Detection of signal molecules by bacteria acts as stimulation which leads to altered gene expression once the minimal threshold is reached. Quorum sensing is a phenomenon that allows both Gram-negative and Gram-positive bacteria to sense one another and to regulate a wide variety of physiological activities. Such activities include symbiosis, virulence, motility, antibiotic production, and biofilm formation. Autoinducers come in a number of different forms depending on the species, but the effect that they have is similar in many cases. Autoinducers allow bacteria to communicate both within and between different species. This communication alters gene expression and allows bacteria to mount coordinated responses to their environments, in a manner that is comparable to behavior and signaling in higher organisms. Not surprisingly, it has been suggested that quorum sensing may have been an important evolutionary milestone that ultimately gave rise to multicellular life forms.
In enzymology, a N-acetylmuramoyl-L-alanine amidase is an enzyme that catalyzes a chemical reaction that cleaves the link between N-acetylmuramoyl residues and L-amino acid residues in certain cell-wall glycopeptides.
Peptidoglycan recognition protein 2(PGLYRP2) is an enzyme, N-acetylmuramoyl-L-alanine amidase (NAMLAA), that hydrolyzes bacterial cell wall peptidoglycan and is encoded by the PGLYRP2 gene.
Peptidoglycan recognition protein 1, PGLYRP1, also known as TAG7, is an antibacterial and pro-inflammatory innate immunity protein that in humans is encoded by the PGLYRP1 gene.
Peptidoglycan binding domains have a general peptidoglycan binding function and a common core structure consisting of a closed, three-helical bundle with a left-handed twist. It is found at the N or C terminus of a variety of enzymes involved in bacterial cell wall degradation. Examples are:
In molecular biology, the CHAP domain is a region between 110 and 140 amino acids that is found in proteins from bacteria, bacteriophages, archaea and eukaryotes of the family Trypanosomidae. The domain is named after the acronym cysteine, histidine-dependent amidohydrolases/peptidases. Many of these proteins are uncharacterised, but it has been proposed that they may function mainly in peptidoglycan hydrolysis. The CHAP domain is found in a wide range of protein architectures; it is commonly associated with bacterial type SH3 domains and with several families of amidase domains. It has been suggested that CHAP domain containing proteins utilise a catalytic cysteine residue in a nucleophilic-attack mechanism.
The bacterial cell wall provides strength and rigidity to counteract internal osmotic pressure, and protection against the environment. The peptidoglycan layer gives the cell wall its strength, and helps maintain the overall shape of the cell. The basic peptidoglycan structure of both Gram-positive and Gram-negative bacteria comprises a sheet of glycan chains connected by short cross-linking polypeptides. Biosynthesis of peptidoglycan is a multi-step process comprising three main stages:
Cyclic di-AMP is a second messenger used in signal transduction in bacteria and archaea. It is present in many Gram-positive bacteria, some Gram-negative species, and archaea of the phylum euryarchaeota.
Peptidoglycan recognition proteins (PGRPs) are a group of highly conserved pattern recognition receptors with at least one peptidoglycan recognition domain capable of recognizing the peptidoglycan component of the cell wall of bacteria. They are present in insects, mollusks, echinoderms and chordates. The mechanism of action of PGRPs varies between taxa. In insects, PGRPs kill bacteria indirectly by activating one of four unique effector pathways: prophenoloxidase cascade, Toll pathway, IMD pathway, and induction of phagocytosis. In mammals, PGRPs either kill bacteria directly by interacting with their cell wall or outer membrane, or hydrolyze peptidoglycan. They also modulate inflammation and microbiome and interact with host receptors.
The bacterial murein precursor exporter (MPE) family is a member of the cation diffusion facilitator (CDF) superfamily of membrane transporters. Members of the MPE family are found in a large variety of Gram-negative and Gram-positive bacteria and facilitate the translocation of lipid-linked murein precursors. A representative list of proteins belonging to the MPE family can be found in the Transporter Classification Database.
The LCP family or TagU family of proteins is a conserved family of phosphotransferases that are involved in the attachment of teichoic acid (TA) molecules to gram-positive cell wall or cell membrane. It was initially thought as the LytR component of a LytABC operon encoding autolysins, but the mechanism of regulation was later realized to be the production of TA molecules. It was accordingly renamed TagU.
Peptidoglycan recognition protein 3 is an antibacterial and anti-inflammatory innate immunity protein that in humans is encoded by the PGLYRP3 gene.
Peptidoglycan recognition protein 4 is an antibacterial and anti-inflammatory innate immunity protein that in humans is encoded by the PGLYRP4 gene.